# PROPOSED MITIGATED NEGATIVE DECLARATION RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

PROJECT TITLE: Runway 12/30 Safety Area Improvement Project at Bishop Airport

LEAD AGENCY/PROJECT PROPONENT: County of Inyo, Department of Public Works

**BRIEF PROJECT DESCRIPTION:** To satisfy FAA regulations for runways serving the type of aircraft currently operating on Runway 12/30, the Proposed Project would provide a standard Runway Safety Area (RSA). This would be accomplished by clearing, cutting, filling, grading, and compacting approximately 14 acres of land near the runway ends within the RSA. An existing Los Angeles Department of Water and Power (LADWP) patrol road segment and segments of security fence line would be realigned to avoid encroaching within the RSA. Areas along the sides of the runway inside the RSA would also be graded to ensure an adequate, flat surface throughout the length of the RSA. The Proposed Project would not induce any changes in the frequency or type of operations occurring at Bishop Airport.

**PROJECT LOCATION:** Bishop Airport is located approximately 1.5 miles east of the City of Bishop in unincorporated Inyo County. Inyo County is located in the Eastern Sierra region east of the Sierra Nevada mountains and west of the Nevada border. A map showing the location of Bishop Airport in a regional context is provided as Figure 1, on page 3 in the Initial Study.

**INITIAL STUDY:** An Initial Study for the Proposed Project was prepared in accordance with the California Environmental Quality Act (CEQA) and its implementing guidelines to ascertain whether the proposed improvements to the RSA would result in a significant effect on the environment. A copy of the Initial Study is attached to this proposed Mitigated Negative Declaration (MND) and is incorporated by reference.

**FINDING:** Inyo County finds, on the basis of the whole record before it (including the Initial Study, and any comments received and responses thereto), that there is no substantial evidence that the Proposed Project with prescribed mitigation incorporated may have a significant effect on the environment and that this MND reflects Inyo County's independent judgment and analysis.

Mitigation measures are included in this project to avoid potentially significant effects related to temporary construction impacts. See pages 23, 28, 29, 30, and 31.

DATE: December 1, 2024

Cathreen Richards Planning Director Inyo County 168 N. Edwards St. Independence, CA 93526

#### Final

# RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Final Initial Study/Mitigated Negative Declaration

Prepared for County of Inyo

December 2024





#### Final

# RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Final Initial Study/Mitigated Negative Declaration

Prepared for County of Inyo Department of Public Works 168 North Edwards Street Independence, CA 93526 December 2024

2600 Capitol Avenue Suite 200 Sacramento, CA 95816 916.564.4500 esassoc.com

San Diego Atlanta Orlando Palm Beach County Bend San Francisco Camarillo Pasadena San Jose Irvine Pensacola Sarasota Los Angeles Petaluma Seattle Mobile Portland Tampa Oakland Sacramento



OUR COMMITMENT TO SUSTAINABILITY | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper.

## **TABLE OF CONTENTS**

|                                                | <u>Page</u> |
|------------------------------------------------|-------------|
| Introduction                                   | 1           |
| Project Location                               | 2           |
| Bishop Airport                                 | 2           |
| Existing Airport Facilities and Services       |             |
| Current Runway Safety Area – Runway 12/30      |             |
| Project Description                            |             |
| Runway Safety Area Improvements                |             |
| Construction Activities and Schedule           |             |
| Operation                                      |             |
| Required Project Approvals                     | 8           |
| Environmental Factors Potentially Affected     |             |
| Environmental Checklist                        |             |
| Aesthetics                                     |             |
| Agriculture and Forestry Resources             |             |
| Air Quality                                    |             |
| Biological Resources                           |             |
| Cultural Resources                             |             |
| EnergyGeology and Soils                        |             |
| Greenhouse Gas Emissions                       |             |
| Hazards and Hazardous Materials                |             |
| Hydrology and Water Quality                    |             |
| Land Use and Planning                          |             |
| Mineral Resources                              |             |
| Noise                                          |             |
| Population and Housing                         |             |
| Public Services                                |             |
| Transportation                                 |             |
| Tribal Cultural Resources                      |             |
| Utilities and Service Systems                  |             |
| Wildfire                                       | 75          |
| Mandatory Findings of Significance             | 76          |
|                                                |             |
| Appendices                                     |             |
| A. Airport Air Quality and Climate Analysis    | A-1         |
| B. Biological Resources Technical Report       |             |
| C. Aquatic Resources Delineation Report        | C-1         |
| D. Tribal Consultation                         |             |
| E. Mitigation Monitoring and Reporting Program |             |
| F. Comments and Responses                      | F-1         |

|                                                                      | <u>Page</u> |
|----------------------------------------------------------------------|-------------|
| List of Figures                                                      |             |
| Figure 1 Airport Location                                            | 3           |
| Figure 2 Bishop Airport Vicinity Map                                 | 4           |
| Figure 3 Runway 12/30 Existing RSA                                   | 6           |
| Figure 4 Proposed Project Runway 12/30                               | 9           |
| Figure 5 Proposed Project Runway 12 End                              | 10          |
| Figure 6 Proposed Project Runway 30 End                              | 11          |
| Figure 7 Biological Resources Survey Area                            | 27          |
| Figure 8 Wetlands – Runway 12 End                                    | 32          |
| Figure 9 Wetlands – Runway 30 End                                    | 33          |
| Figure 10 Area of Potential Effects                                  | 38          |
| Figure 11 Floodplains – Runway 12 End                                | 55          |
| Figure 12 Floodplains – Runway 30 End                                | 56          |
| Figure 13 Existing Conditions 2022 CNEL Contours                     | 63          |
| Figure 14 Proposed Project 2029 CNEL Contours                        | 64          |
| List of Tables                                                       |             |
| Table 1 Estimated Construction Schedule                              | 20          |
| Table 2 Maximum Regional Construction Emissions – Without Mitigation |             |
| Table 3 Maximum Regional Construction Emissions – With Mitigation    |             |
| Table 4 Proposed Project Construction Greenhouse Gas Emissions       |             |

#### Introduction

Inyo County (County) proposes to improve the Runway Safety Area for Runway 12/30 at Bishop Airport (BIH or Airport) to meet design standards and safety requirements established by the Federal Aviation Administration (FAA). The Proposed Project is subject to discretionary approval by the County and thus subject to the California Environmental Quality Act (CEQA). As the owner and operator of the Airport, the County is the lead agency under CEQA for the purposes of this Initial Study. The following sections provide background information on the Proposed Project as well as a detailed project description.

A Draft Initial Study for the Proposed Project was made available for public review from April 11, 2024 through May 21, 2024. The Draft Initial Study was then recirculated for an additional public review from October 22, 204 to November 20, 2024. During both public review periods, the Draft Initial Study was available for download from the Inyo County Department of Public Works webpage<sup>1</sup>, and it was also available in digital and hardcopy formats at the Bishop Airport. A public workshop was held on May 14, 2024 from 5:00 pm to 7:00 pm during which no public comments were submitted.-A comment letter was submitted by the California Department of Fish and Wildlife (CDFW) and is included in **Appendix F**. Based on input from CDFW, seven additional mitigation measures were added to address potential impacts to biological resources.

This Final Initial Study and Mitigated Negative Declaration includes revisions to the *Cultural Resources* and *Tribal Cultural Resources* sections of the Draft Initial Study to reflect minor refinements to the description of the Area of Potential Effects (APE) delineated for the Proposed Project, the completion of the FAA's consultation with the California State Historic Preservation Office (SHPO) regarding the Proposed Project, and coordination and communication with the Bishop Paiute Tribe regarding the Proposed Project that was ongoing at the time the Draft Initial Study was initially available for public review.

The Final Initial Study and Mitigated Negative Declaration also includes revisions to the Biological Resources section of the Draft Initial Study to address concerns related to the elapsed time from the latest field survey of biological resources to the publication of the Draft Initial Study.

The revised text does not provide new information that would result in any new significant impact not identified in the Draft Initial Study or a substantial increase in the severity of an impact identified in the Draft Initial Study. Thus, none of the text revisions would require recirculation pursuant to CEQA Guidelines section 15088.5. In the revisions to the *Cultural Resources* and *Tribal Cultural Resources* sections in this Final Initial Study and Mitigated Negative Declaration, deleted text is shown in strikethrough and new text is double-underlined.

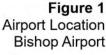
https://www.invocounty.us/services/public-works

## **Project Location**

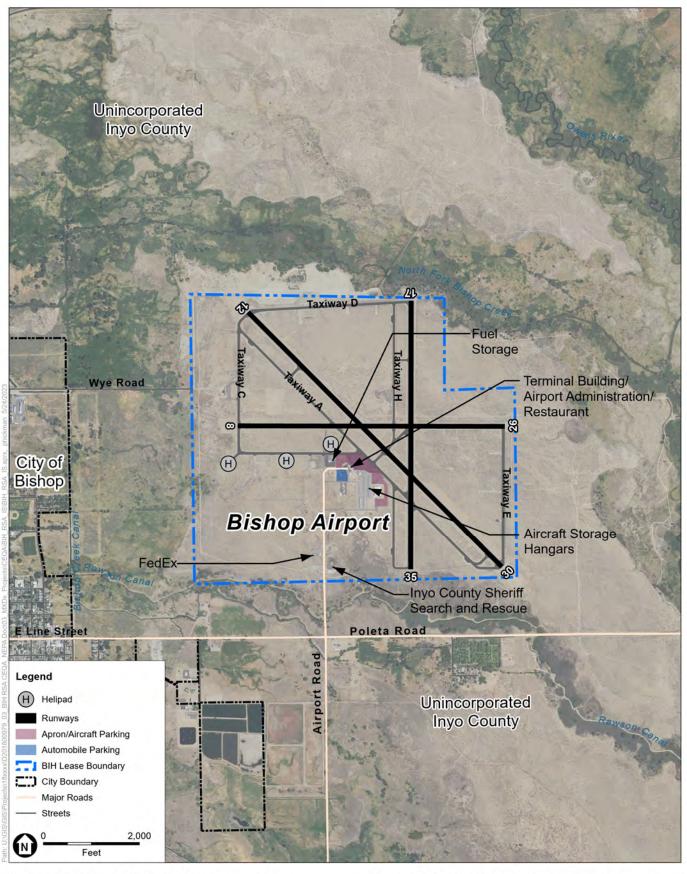
BIH is a public-use airport located in Inyo County in the Eastern Sierra region of California approximately 1.5 miles east of the city of Bishop and 267 miles northeast of the city of Los Angeles. The Airport's regional location is shown on **Figure 1**. The Airport is owned and operated by Inyo County and is situated on land leased from the City of Los Angeles Department of Water and Power (LADWP). The County also holds an easement for the airfield as well as other areas around the Airport, ensuring indefinite use of the property as an airport. The Airport and vicinity are shown on **Figure 2**.

## **Bishop Airport**

BIH is designated in the FAA's 2023-2027 National Plan of Integrated Airport Systems (NPIAS) as a general aviation airport. The Airport serves general aviation activity, limited military activity, as well as charter and air cargo operations. Beginning in December 2021, commercial air passenger service was introduced to BIH, and the Airport will continue to serve commercial air passenger service into the foreseeable future.

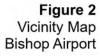

## **Existing Airport Facilities and Services**

BIH has three runways, Runway 12/30, Runway 17/35, and Runway 8/26, shown on Figure 2, which are designed to accommodate specific types of aircraft. The Airport's primary runway, Runway 12/30, is 7,498 feet long and 100 feet wide. The runway is oriented in a southeast/northwest direction and paved with asphalt concrete. Runway 17/35 is north-south oriented, 5,600 feet long by 100 feet wide, and paved with asphalt. Runway 8/26 is east-west oriented, 5,567 feet long by 100 feet wide, and paved with asphalt. Runway 8/26 is currently planned for closure with the Runway 8 end to be converted to a taxiway, and the Runway 26 end to be used as helicopter parking. Runways 12/30 and 17/35 are served by parallel taxiways (Taxiway A and Taxiway H, respectively). The Airport has three dedicated helipads south of the Runway 8 end.




SOURCE: Esri; Inyo County Department of Public Works; ESA, 2020.

Runway 12/30 Safety Area Improvement Project at Bishop Airport








SOURCE: Esri; Inyo County Department of Public Works; ESA, 2020.

Runway 12/30 Safety Area Improvement Project at Bishop Airport



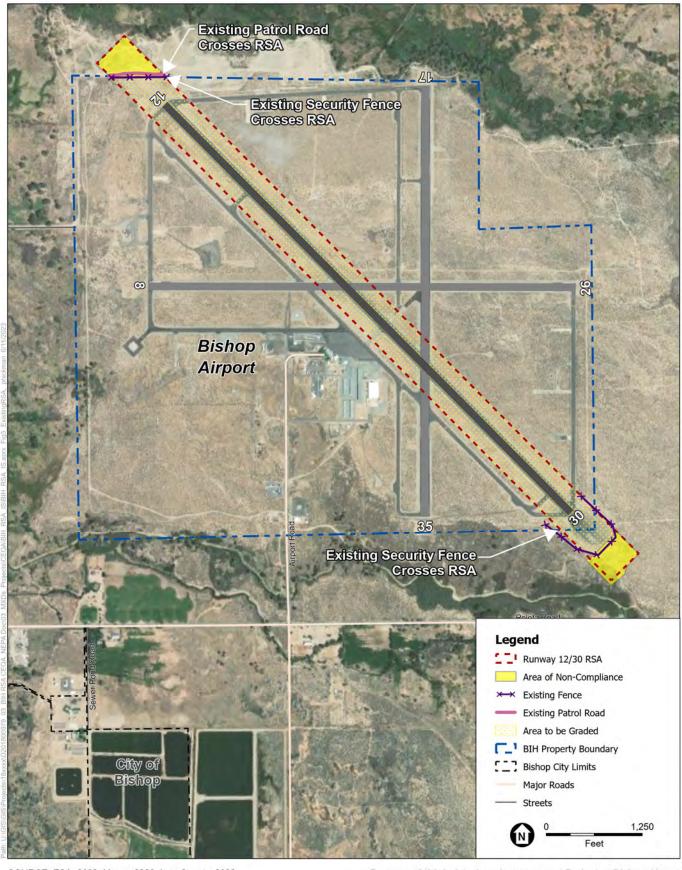


The current airport layout plan (ALP) shows that the existing Airport Reference Code (ARC) is B-II with a critical/design aircraft of the Lockheed P-3 Orion, and a future ARC C-III with critical/design aircraft of Boeing 737/Airbus 319. The ALP identifies ARC C-III aircraft (e.g., Bombardier CRJ-700) as the critical design aircraft of Runway 12/30 with a future ARC C-III designation with a critical design aircraft of Boeing 737/Airbus 319. Both Runways 12 and 30 provide four light Precision Approach Path Indicators (PAPIs). Each PAPI light is angled to reflect the appropriate glide path for the runway end. Runway 12 has a 3.0-degree glide path and Runway 30 has a 3.52-degree glide path.

Landside facilities at the Airport include a terminal building, an airport administration building, a tensioned fabric building employed as an annex to the terminal building, an air cargo trailer, an aircraft parking apron and storage hangars, a maintenance building, an air ambulance/aircraft rescue and firefighting (ARFF) hangar, aircraft fuel storage facilities, an airport restaurant, and vehicle parking areas. FedEx, Suddenlink Communications, the Inyo County Sheriff, and the Eastern Sierra Transit Authority (ESTA) also maintain facilities within the Airport's leasehold.

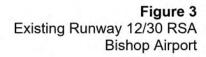
## Current Runway Safety Area – Runway 12/30

A runway safety area (RSA) is a rectangular area surrounding a runway that is designed to enhance safety for aircraft that undershoot, overrun, or otherwise leave the paved runway surface. Per FAA regulations, an airport must keep the RSA cleared, graded, drained, and accessible by ARFF equipment. The FAA defines RSA standards and dimensions based on the type of aircraft using the airport. Following these guidelines, the standard RSA for Runway 12/30 would be 500 feet wide, centered on the runway centerline, and extend 600 feet prior to the runway threshold and 1,000 feet beyond the runway end. The RSA surface should have no more than a three-percent slope for 200 feet off the runway end and a maximum slope of five percent thereafter. If an RSA does not provide 600 feet prior to the runway threshold, the FAA requires that either the RSA be improved to meet this criterion or that the runway threshold be permanently displaced.


**Figure 3** depicts the existing Runway 12/30 RSA. The portions of the RSA beyond the existing Airport perimeter fence occupy land outside the current leasehold with the LADWP, but within the Airport's easement. Currently, the Runway 12 RSA meets FAA's design guidelines for approximately 285 feet prior to the threshold and 640 feet beyond the runway end.

\_

This term refers to "the most demanding aircraft type, or grouping of aircraft with similar characteristics, that make regular use of the airport. Regular use is 500 annual operations, including both itinerant and local operations but excluding touch-and-go operations. An operation is either a takeoff or landing." (FAA Advisory Circular AC 150/5000-17, Critical Aircraft and Regular Use Determination, June 2017.


ARC is an airport designation referenced on the ALP and derived from the airport's highest Runway Design Code (RDC). The RDC signifies the design standards to which the runway is to be built, and is composed of two codes, the Aircraft Approach Category (AAC) and the Aircraft Design Group (ADG), plus the approach visibility minimums. The ARC is comprised of only the AAC and ADG. The AAC is represented by a letter, A, B, C, D, or E, and represents a grouping of aircraft based on landing speed. The ADG is a classification of aircraft based in wingspan and tail height. B-II signifies an approach speed of 91 knots or more but less than 121 knots and a wingspan of 49' to 79' and a tail height of 20' to 30'. C-III signifies an approach speed of 121 knots or more but less than 141 knots and a wingspan of 79' to 118' and a tail height 30' to 45' (FAA Advisory Circular 150/5300-13B, Airport Design, March 2022).

<sup>&</sup>lt;sup>4</sup> A PAPI is a system of lights that provides visual descent guidance for aircraft on final approach to a runway.



SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport





Similarly, the Runway 30 RSA meets FAA design guidelines for approximately 640 feet prior to the threshold and 245 feet beyond the runway end. The remaining 715 feet at the north end and 360 feet at the south end feature excessive slopes, noncompliant grading, and/or excessive vegetation. Declared distances are currently employed on Runway 12/30 to ensure adequate RSAs.<sup>5</sup> In addition, an LADWP patrol road currently runs through the RSA off the Runway 12 end, and the Airport security fence runs through the RSAs off both the Runway 12 and Runway 30 ends. As all non-essential objects should be located outside the RSA, these features should be realigned around the outer perimeter of a standard RSA.<sup>6</sup>

## **Project Description**

To satisfy FAA regulations for runways serving the type of aircraft currently operating on Runway 12/30, the Proposed Project would provide a standard RSA. The Proposed Project, depicted on **Figure 4**, would involve the following components.

## Runway Safety Area Improvements

### Runway 12 End

Approximately 7.8 acres of land within the RSA beyond the Runway 12 end would be cleared of vegetation, cut, filled, graded, and compacted to provide a standard RSA. A detailed depiction of the area of cut, fill, and grading is featured on **Figure 5**.

The existing LADWP unpaved patrol road would be relocated outside the runway's Object Free Area (OFA). The portion of relocated road would be approximately 15 feet wide and 0.25 mile long.

Approximately 1,635 linear feet of existing perimeter fence would be removed and approximately 2,175 linear feet of new perimeter fence would be installed beyond the OFA boundary.

## Runway 30 End

Approximately 6.5 acres of land within the RSA beyond the Runway 30 end would be cleared of vegetation, cut, filled, and graded to accommodate the proposed RSA improvements. A detailed depiction of the area of cut, fill, and grading is featured on **Figure 6**. Approximately 2,000 linear feet of existing perimeter fence would be removed and approximately 3,125 linear feet of new perimeter fence would be installed outside the OFA.

\_

Declared distances are frequently used by Airport Authorities to comply with FAA requirements for Runway Safety Areas. Declared distances represent the maximum distances available and suitable for meeting takeoff, failed or rejected takeoff, and landing distance performance requirements. Declared distances are appropriate to use on runways that are planned to be improved to meet design standards at some later date but have design deficiencies in their existing state. In these circumstances, the publication of declared distances for the existing state is warranted to satisfy airport design requirements and as an operational imperative so that pilots have accurate runway length information for flight planning (FAA Advisory Circular 150/5300-13B, Airport Design, March 2022).

<sup>&</sup>lt;sup>6</sup> Federal Aviation Administration, Advisory Circular 150/5300-13B, Airport Design, §3.10.1.4, March 31, 2022.

#### **Runway Sides**

The RSA alongside Runway 12/30 is generally in compliance with FAA regulations but would be graded to ensure an adequate, flat surface throughout.

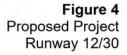
#### Construction Activities and Schedule

Proposed Project construction activities would include site preparation, grading, and ground clearing to achieve a uniform surface, as well as realigning existing segments of fence line and patrol road. During the site preparation phase, approximately 11,276 cubic yards of organics, rock, and other materials would be relocated within the Airport lease boundary. During the grading phase, approximately 50,000 cubic yards of soil would be needed as fill. Cut material would supply the bulk of the necessary fill, with the balance being derived from 20,780 cubic yards of material from an on-airport borrow area immediately adjacent to the RSA beyond the Runway 12 end. Proposed Project construction is expected to commence in late 2024 and would last approximately three months.

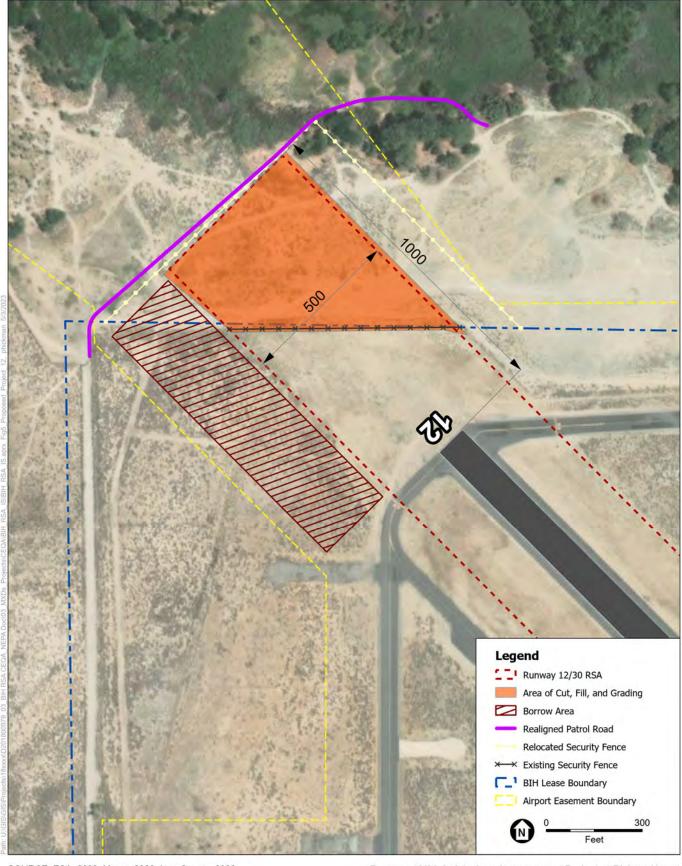
## Operation

The Proposed Project would not involve any operational changes other than the elimination of some declared distances, as it would be conducted solely to establish a standard RSA around Runway 12/30. No additional landing or departure pavement would be introduced that could necessitate any other amendments to flight procedures.

## **Required Project Approvals**

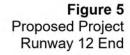

The following approvals would be required for the Proposed Project:

- Inyo County Public Works Department CEQA review and adoption of the Mitigated Negative Declaration (MND) and Mitigation, Monitoring, and Reporting Program (MMRP)
- Lahontan Regional Water Quality Control Board Construction activity resulting in a land disturbance of one acre or more necessitates application for a Construction General Permit issued by the State Water Resources Control Board.
- Federal Aviation Administration Unconditional approval of those portions of the Airport Layout Plan for Bishop Airport that may depict components of the Proposed Project pursuant to 49 U.S.C. §§ 40103(b), 44718, and 47107(a) (16), and 14 CFR Part 77. Also, approval of funding for the Proposed Project.




SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport

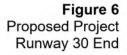







SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport








SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport





## **ENVIRONMENTAL CHECKLIST**

## **Initial Study**

1. Project Title: Runway 12/30 Safety Area Improvement

Project at Bishop Airport

2. Lead Agency Name and Address: County of Inyo, Department of Public Works

3. Contact Person and Phone Number: Ashley Helms, Deputy Director of Public

Works – Airports (760) 878-0200

**4. Project Location:** Bishop Airport, Inyo County

5. Project Sponsor's Name and Address: County of Inyo, Department of Public Works

168 North Edwards Street Independence, CA 93526

**6. General Plan Designation(s):** Public Service Facilities (PF)

**7. Zoning:** Public (P)

8. Description of Project:

Inyo County proposes to improve the Runway Safety Area for Runway 12/30 at Bishop Airport to meet design standards and safety requirements established by the Federal Aviation Administration (see *Project Description* in this document for a complete description of the Proposed Project).

#### 9. Surrounding Land Uses and Setting:

Bishop Airport is located in a rural setting primarily surrounded by open space and agricultural land uses with a small area of residential development and a cemetery south of the Airport on Poleta Road. The Inyo County General Plan designates the majority of BIH property as Public Service Facilities (PF) with Light Industrial (LI) land use located in the southwestern corner of the Airport property. The Airport is within the Public (P) zoning district in the Inyo County Zoning Code. Lands surrounding the Airport are designated as Agriculture (A) in the Inyo County Plan and Open Space - 40 acre minimum (OS-40) in the Inyo County Zoning Code. While owned and operated by Inyo County, the Airport is located on property leased from the LADWP. Inyo County holds an easement on the land leased from the LADWP ensuring indefinite use of the property as an airport. The City of Bishop is located approximately one and a half miles west of the Airport.

#### 10. Other public agencies whose approval is required:

Lahontan Regional Water Quality Control Board – Construction activity resulting in a land disturbance of one acre or more necessitates application for a Construction General Permit issued by the State Water Resources Control Board.

Federal Aviation Administration – Unconditional approval of those portions of the Airport Layout Plan for Bishop Airport that may depict components of the Proposed Project pursuant to 49 U.S.C. §§ 40103(b), 44718, and 47107(a) (16), and 14 CFR Part 77. Also, approval of funding for the Proposed Project.

11. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

The County of Inyo has consulted with California Native American tribes pursuant to Public Resources Code section 21080.3.1. The details of this consultation are provided in the *Cultural Resources* and *Tribal Cultural Resources* section of this Initial Study.

## **Environmental Factors Potentially Affected**

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages. Aesthetics ☐ Agriculture and Forestry Resources Air Quality ☐ Biological Resources Cultural Resources Energy ☐ Geology/Soils ☐ Greenhouse Gas Emissions Hazards & Hazardous Materials ☐ Hydrology/Water Quality Land Use/Planning Mineral Resources ☐ Noise Population/Housing **Public Services** Recreation Transportation Tribal Cultural Resources ☐ Utilities/Service Systems ☐ Wildfire Mandatory Findings of Significance **DETERMINATION:** (To be completed by the Lead Agency) On the basis of this Initial Study: I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared. I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared. I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required. I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed. I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the

Date

Signature

proposed project, nothing further is required.

### **Environmental Checklist**

#### **Aesthetics**

| Issi | ues (and Supporting Information Sources):                                                                                                                                                                                                                                                                                                                                | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-----------|
| I.   | <b>AESTHETICS</b> — Except as provided in Public Resources Code Section 21099, would the project:                                                                                                                                                                                                                                                                        |                                      |                                                    |                                    |           |
| a)   | Have a substantial adverse effect on a scenic vista?                                                                                                                                                                                                                                                                                                                     |                                      |                                                    | $\boxtimes$                        |           |
| b)   | Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?                                                                                                                                                                                                                    |                                      |                                                    |                                    |           |
| c)   | In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality? |                                      |                                                    |                                    |           |
| d)   | Create a new source of substantial light or glare which would adversely affect daytime or nighttime views in the area?                                                                                                                                                                                                                                                   |                                      |                                                    |                                    |           |

#### **Discussion**

a) Bishop Airport sits within California's Eastern Sierra region. The White Mountains are visible from the Airport looking to the east, and the Sierra Nevada Mountains are visible to the west and southwest. Lowland riparian areas are visible to the north and south of the Airport along North Fork Bishop Creek and Rawson Canal respectively. Views into the Airport are consistent with those of a working airfield with visible terminal and support buildings.

The Proposed Project would involve clearing and grading areas within the Runway 12/30 RSA to establish a uniform grade clear of any potential obstructions. This would involve removal of some low-lying vegetation. Areas of low elevation would be filled with sediment, and an existing fence line and patrol road would be realigned to avoid the RSA.

The Proposed Project would not include the construction of any buildings or other structures that would result in an obstruction of views of or damage to scenic resources or scenic vistas in the Airport area. Therefore, any impact on scenic vistas would be **less** than significant.

- b) No state scenic highways are located in or easily visible from the Airport. Therefore, there would be **no impact** related to substantial damage of scenic resources within a state scenic highway.
- c) The northern portion of the Runway 12/30 RSA at the Runway 12 end is situated within a publicly accessible open space area formerly used as a material pit but now occasionally used for passive recreational activities such as hiking and cycling. The area within the

RSA would be cleared of existing vegetation and filled to achieve an even grade. An existing fence would be realigned to follow the perimeter of the area and prevent public access. This would alter the appearance of a relatively small portion of this area that is currently within an airport easement already dedicated to airport use. Furthermore, the area to be cleared, filled, and graded is already adjacent to an operational airfield with sparse vegetation and is of no particular visual interest. Therefore, any impacts to the aesthetic character of the landscape would be **less than significant**.

d) The Proposed Project would not involve any introduction or reconfiguration of airfield lighting. The realigned patrol roads would not be lighted, and no other lighting sources would be introduced. The Proposed Project would not introduce any sources of glare, and no daytime or nighttime views would be affected. Therefore, there would be **no impact** on daytime or nighttime views in the area due to introduction of new sources of light or glare.

#### References

California Department of Transportation (Caltrans), 2023. *California State Scenic Highways*. Available at: <a href="https://dot.ca.gov/programs/design/lap-landscape-architecture-and-community-livability/lap-liv-i-scenic-highways">https://dot.ca.gov/programs/design/lap-landscape-architecture-and-community-livability/lap-liv-i-scenic-highways</a>. Accessed June 1, 2023.

Loce Than

## Agriculture and Forestry Resources

| Issu | es (and Supporting Information Sources):                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact                                          | Significant<br>with Mitigation<br>Incorporated                                                                 | Less Than<br>Significant<br>Impact                                                            | No Impact                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|
| II.  | AGRICULTURE AND FORESTRY RESOURCES — In determining whether impacts to agricultural resource refer to the California Agricultural Land Evaluation and Dept. of Conservation as an optional model to use in a determining whether impacts to forest resources, incluagencies may refer to information compiled by the California State's inventory of forest land, including the Forest Assessment project; and forest carbon measurement rollifornia Air Resources Board. Would the project: | Site Assessments Steessing impaiding timberland fornia Department and Range A | ent Model (1997) p<br>cts on agriculture a<br>d, are significant e<br>nent of Forestry an<br>ssessment Project | orepared by the<br>and farmland. In<br>nvironmental ef<br>d Fire Protection<br>and the Foresi | California<br>n<br>fects, lead<br>on regarding<br>t Legacy |
| a)   | Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?                                                                                                                                                                                                                                                  |                                                                               |                                                                                                                |                                                                                               |                                                            |
| b)   | Conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                |                                                                                               | $\boxtimes$                                                |
| c)   | Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?                                                                                                                                                                                                      |                                                                               |                                                                                                                |                                                                                               |                                                            |
| d)   | Result in the loss of forest land or conversion of forest land to non-forest use?                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                                                                                |                                                                                               | $\boxtimes$                                                |
| e)   | Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                                |                                                                                               | $\boxtimes$                                                |

#### **Discussion**

- a) The Proposed Project would cut, fill, and grade a portion of the RSA extending south into land designated for Agriculture (A) by the Inyo County General Plan. The area to be graded and enclosed within a realigned fence is occasionally used for livestock grazing and measures 5.5 acres. However, this land is not designated as Prime Farmland, Unique Farmland, or Farmland of Statewide Importance as identified by the California Department of Conservation's Important Farmland Finder. Therefore, the Proposed Project would have **no impact** associated with conversion of Prime Farmland, Unique Farmland, or Farmland of Statewide Importance.
- b) The Proposed Project would cut, fill, and grade a 5.5-acre portion of the RSA extending south into land owned by the LADWP and zoned by Inyo County as Open Space 40 acre minimum (OS-40). The land is occasionally used for livestock grazing which is a permitted use in land with the OS-40 zoning designation. However, airports, landing fields, and airstrips are uses conditionally allowed by the OS-40 zone designation. The affected area is not subject to a Williamson Act contract. Furthermore, the affected area is currently subject to an easement securing it for aviation use. Therefore, the Proposed

Project would have **no impact** related to conflict with existing zoning for agricultural use or a Williamson Act contract.

- c) The Proposed Project would cut, fill, and grade a 6.4-acre portion of the RSA extending north into land owned by the LADWP and with the zoning designation OS-40. The area is designated for Natural Resources (NR) use according to the Inyo County General Plan and is open to the public for forms of passive recreation such as hiking and off-road cycling. However, the area to be cut, filled, and graded is sparsely vegetated with no observable tree-cover. The Proposed Project would have **no impact** related to conflict with existing zoning for forest land or timberland.
- d) The portions of the RSA to be cut, filled, and graded occur in sparsely vegetated areas, and no clearing of existing tree cover is anticipated. Therefore, the Proposed Project would have **no impact** associated with conversion of forest land to non-forest use.
- e) The alteration of land associated with the Proposed Project would cut, fill, and grade areas within and existing RSA. These areas are sparsely vegetated, and the Proposed Project would involve grading the terrain to achieve a standard RSA. The land within the existing Runway 12/30 RSA is currently subject to an easement preserving use of the areas for aviation use. The realignment of the existing fencing and patrol road would be designed to avoid existing tree cover. Neither these nor any other element of the Proposed Project would result in conversion of agriculture or forest land to other uses. There would be **no impact** related to this significance criterion.

#### References

California Department of Conservation, 2020. *Important Farmland Finder*. Available at: <a href="https://maps.conservation.ca.gov/DLRP/CIFF/">https://maps.conservation.ca.gov/DLRP/CIFF/</a>. Accessed February 21, 2023.

## Air Quality

| Issu | es (and Supporting Information Sources):                                                                                                                                                       | Potentially<br>Significant<br>Impact | Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------|-----------|
| III. | AIR QUALITY — Where available, the significance criteria established by pollution control district may be relied upon to make the                                                              |                                      |                                                | •                                  | or air    |
| a)   | Conflict with or obstruct implementation of the applicable air quality plan?                                                                                                                   |                                      |                                                | $\boxtimes$                        |           |
| b)   | Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard? |                                      |                                                |                                    |           |
| c)   | Expose sensitive receptors to substantial pollutant concentrations?                                                                                                                            |                                      |                                                | $\boxtimes$                        |           |
| d)   | Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?                                                                                 |                                      |                                                |                                    |           |

Lace Than

#### **Technical Analysis**

The Proposed Project's construction emissions were estimated using the California Emissions Estimator Model (CalEEMod) (Version 2020.4.0) software, which is a statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria pollutant emissions associated with construction and operations from a variety of land use projects. The model was developed for the California Air Pollution Control Officers Association in collaboration with the California air districts. CalEEMod is based on outputs from the California Air Resources Board (CARB) OFFROAD model and the CARB on-road vehicle emissions factor (EMFAC) model, which are emissions estimation models developed by CARB and used to calculate emissions from construction activities, heavy-duty off-road equipment, and on-road vehicles. Emissions from on-road vehicles were estimated outside of CalEEMod using EMFAC2021 emission factors for haul and material vendor trucks and worker vehicles.

#### **Discussion**

a) Bishop Airport is located within the jurisdiction of the Great Basin Unified Air Pollution Control District (GBUAPCD) and Great Basin Valleys Air Basin (Basin). There are four air quality plans in the GBUAPCD. However, the Airport is not located in any of the four planning areas, as the portion of the Owens Valley in which it is situated is in attainment with National Ambient Air Quality Standards (NAAQS).

The GBUAPCD enforces regulations to limit emissions of criteria air pollutants and toxic air contaminants (TACs) and regulating visible emissions, nuisance emissions, and fugitive dust emissions through Rules 401 (fugitive dust and visible emissions) and 402 (nuisance emissions). The Inyo County General Plan enumerates implementation measures to incorporate the air quality goals and objectives developed by the County in concert with the GBUAPCD. Implementation measures applicable to grading activities

include dust suppression requirements such as site watering or use of other dust suppressants, phasing, the covering of soil stockpiles, and suspension of grading activity during wind events exceeding 25 miles per hour. The Proposed Project would incorporate relevant GBUAPCD regulations during construction, including Rule 401, and no conflict with or obstruction of any air quality plan would occur. Thus, this impact would be **less than significant**.

b) As indicated above, the Airport is within Inyo County within the Great Basin Valleys Air Basin. Currently, neither Inyo County nor the GBUAPCD have established numerical significance thresholds for quantitatively determining air quality impacts. For the purposes of CEQA analysis, GBUAPCD uses the Mojave Desert Air Quality Management District (MDAQMD) standards as their regional significance thresholds. The Basin is in nonattainment for ozone (O<sub>3</sub>) (volatile organic compounds (VOC) and nitrogen oxides (NO<sub>X</sub>) as ozone precursors) and particulate matter (PM<sub>10</sub>) under the California Ambient Air Quality Standards (CAAQS). Excluding PM<sub>10</sub>, the Air Basin is unclassified or in attainment for all criteria air pollutants under the NAAQS. Only portions of the Great Basin Valleys Air Basin, such as Owens Lake, are in nonattainment for PM<sub>10</sub>. The Airport is not located within these nonattainment areas. A technical report describing the air quality analysis was prepared for the Proposed Project and is included as **Appendix A**.

Construction activities associated with the Proposed Project would generate temporary and short-term emissions of criteria pollutants. Construction related emissions are expected from site preparation and grading activities. During the site preparation phase approximately 11,275 cy of organics, rock, and other materials would be relocated within the Airport lease boundary. During the grading phase approximately 50,000 cy of soil would be needed as fill with 20,780 cy of that material being transported from an onairport borrow area. Proposed Project construction is expected to commence in late 2024 and would last approximately three months. Construction duration by phase is provided in **Table 1**. If project construction commences later than the anticipated start date, air quality impacts would be less than those analyzed herein, because a more energy-efficient and cleaner burning construction equipment fleet mix would be expected in the future, pursuant to State regulations that require construction equipment fleet operators to phase-in less polluting heavy-duty equipment. Therefore, air quality impacts would generally be less than those analyzed herein due to the likelihood of less emissions generated.

TABLE 1
ESTIMATED CONSTRUCTION SCHEDULE

| Activity                                                         | Start Date | End Date   | Duration (Work Days) |  |  |  |  |
|------------------------------------------------------------------|------------|------------|----------------------|--|--|--|--|
| Site Preparation 9/1/2024 9/30/2024 30                           |            |            |                      |  |  |  |  |
| Grading/Excavation                                               | 9/1/2024   | 11/30/2024 | 91                   |  |  |  |  |
| Skimming 9/1/2024 9/15/2024 15                                   |            |            |                      |  |  |  |  |
| SOURCE: ESA 2023, in consultation with Invo County Public Works. |            |            |                      |  |  |  |  |

The specific construction fleet may vary due to specific needs at the time of construction. The duration of construction activity and associated construction equipment was estimated based on consultation with Inyo County Public Works and CalEEMod default assumptions. A detailed summary of construction equipment assumptions by phase is provided in the modeling files in Appendix A of this Initial Study.

The maximum daily regional emissions from these activities are estimated by construction phase and compared to the MDAQMD significance thresholds. Maximum daily and annual criteria pollutant emissions are shown in **Table 2**. The calculations in **Table 3** incorporate compliance with dust control measures required to be implemented during each phase of construction by GBUAPCD Rule 401 (Fugitive Dust) where watering is assumed to occur three times per day. Project construction would not exceed any annual criteria pollutant thresholds established by the MDAQMD. However, Project construction emissions would exceed  $NO_X$  pollutant daily thresholds established by the MDAQMD. Therefore, impacts would be considered potentially significant.

TABLE 2
MAXIMUM REGIONAL CONSTRUCTION EMISSIONS – WITHOUT MITIGATION

|                                  | Emissions (pounds per day) |                 |        |                 |                  |                   |
|----------------------------------|----------------------------|-----------------|--------|-----------------|------------------|-------------------|
|                                  | voc                        | NO <sub>x</sub> | со     | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases              |                            |                 |        |                 |                  |                   |
| Site Preparation                 | 5.44                       | 52.27           | 43.04  | 0.13            | 2.99             | 1.64              |
| Grading                          | 12.46                      | 131.34          | 125.40 | 0.28            | 9.02             | 4.92              |
| Skimming                         | 1.93                       | 17.03           | 11.34  | 0.04            | 1.18             | 0.63              |
| Maximum Daily Regional Emissions | 19.82                      | 200.64          | 179.77 | 0.45            | 13.20            | 7.18              |
| MDAQMD Regional Threshold        | 137.0                      | 137.0           | 548.0  | 137.0           | 82.0             | 65.0              |
| Threshold Exceeded?              | No                         | Yes             | No     | No              | No               | No                |
|                                  | Emissions (tons per year)  |                 |        |                 |                  |                   |

|                                   | Linissions (tons per year) |                 |       |                 |                  |                   |
|-----------------------------------|----------------------------|-----------------|-------|-----------------|------------------|-------------------|
|                                   | VOC                        | NO <sub>x</sub> | СО    | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases               |                            |                 |       |                 |                  |                   |
| Site Preparation                  | 0.07                       | 0.69            | 0.55  | <0.01           | 0.04             | 0.02              |
| Grading                           | 0.42                       | 3.94            | 3.53  | 0.01            | 0.39             | 0.22              |
| Skimming                          | 0.01                       | 0.13            | 0.09  | <0.01           | 0.01             | <0.01             |
| Maximum Annual Regional Emissions | 0.51                       | 4.76            | 4.17  | 0.01            | 0.44             | 0.24              |
| MDAQMD Regional Threshold         | 25.0                       | 25.0            | 100.0 | 25.0            | 15.0             | 12.0              |
| Threshold Exceeded?               | No                         | No              | No    | No              | No               | No                |

NOTES: Totals may not add up exactly due to rounding. Refer to Appendix A of this IS/MND for details. SOURCE: ESA. 2023.

Grading

Skimming

Maximum Annual Regional Emissions

MDAQMD Regional Threshold

SOURCE: ESA, 2023.

With implementation of **Mitigation Measure MM-AIR-1**, as described below, the regional daily NO<sub>X</sub> emissions would be reduced to a level below the MDAQMD regional threshold as shown in Table 3. Therefore, impacts related to regional NO<sub>X</sub> construction emissions would be **less than significant with mitigation incorporated**.

TABLE 3
MAXIMUM REGIONAL CONSTRUCTION EMISSIONS – WITH MITIGATION

|                                  |       | Emissions (pounds per day) |              |                 |                  |                   |
|----------------------------------|-------|----------------------------|--------------|-----------------|------------------|-------------------|
|                                  | voc   | NO <sub>x</sub>            | со           | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases              | -     | -                          |              |                 | -                | -                 |
| Site Preparation                 | 2.38  | 25.76                      | 63.86        | 0.13            | 1.68             | 0.44              |
| Grading                          | 6.74  | 91.35                      | 151.27       | 0.28            | 6.08             | 2.22              |
| Skimming                         | 0.69  | 5.47                       | 20.26        | 0.04            | 0.69             | 0.18              |
| Maximum Daily Regional Emissions | 9.81  | 122.58                     | 235.38       | 0.45            | 8.45             | 2.84              |
| MDAQMD Regional Threshold        | 137.0 | 137.0                      | 548.0        | 137.0           | 82.0             | 65.0              |
| Threshold Exceeded?              | No    | No                         | No           | No              | No               | No                |
|                                  |       | E                          | missions (to | ons per yea     | r)               |                   |
|                                  | voc   | NO <sub>x</sub>            | со           | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases              |       |                            |              |                 |                  |                   |
| Site Preparation                 | 0.03  | 0.29                       | 0.86         | <0.01           | 0.02             | 0.01              |

0.16

0.01

0.19

25.0

2.13

0.04

2.45

25.0

4.71

0.15

5.72

100.0

0.01

< 0.01

0.01

25.0

0.26

0.01

0.28

15.0

0.09 <0.01

0.10

12.0

No

#### **Mitigation Measure**

MM-AIR-1: Equipment Emission Standards. The construction contractor shall utilize off-road diesel-powered construction equipment that meet or exceed the CARB and U.S. Environmental Protection Agency (USEPA) Tier 4 Interim off-road emissions standards for all equipment rated at 50 horsepower (hp) or greater and USEPA Tier 4 Final off-road emissions standards for all equipment rated at 400 hp or greater during Project construction. Such equipment shall be outfitted with Best Available Control Technology (BACT) devices including a CARB-certified Level 3 Diesel Particulate Filter or equivalent. A copy of each unit's certified tier specification or model year specification and CARB or GBUAPCD operating permit (if applicable) shall be available upon request at the time of mobilization of each applicable unit of equipment.

c) The Proposed Project would not expose sensitive receptors to excessive pollutant concentrations. The nearest sensitive receptors are residential uses located approximately 0.5 miles to the southwest of the Runway 30 end, which provides a substantial buffer distance from the Project's emission sources that would allow pollutants to disperse to very low concentrations at the sensitive receptors. As shown in Tables 2 and 3, construction emissions would not exceed significance thresholds. In addition, temporary TAC emissions associated with diesel particulate matter (DPM) emissions from heavy construction equipment would occur during the construction phase of the Proposed Project. According to the Office of Environmental Health Hazard Assessment (OEHHA), health effects from TACs are described in terms of individual cancer risk based on a lifetime (i.e., 70-year) resident exposure duration. Given the temporary construction schedule (approximately 3 months), the Proposed Project would not result in a long-term (i.e., lifetime or 70-year) exposure as a result of Proposed Project construction.

Furthermore, as discussed in item (b) above, the Proposed Project would be required to implement Mitigation Measure MM-AIR-1 to reduce regional  $NO_X$  emissions to below the MDAQMD daily significance threshold. The measure would have co-benefits of reducing emissions of  $PM_{10}$  and  $PM_{2.5}$  from heavy-duty diesel construction equipment as the combined use of Tier 4 Interim off-road emissions standards and a Level 3 Diesel Particulate Filter or equivalent would further reduce the TAC emissions during construction activities. Therefore, impacts from TACs during construction would be **less than significant**.

d) Potential sources that may emit odors during construction activities include construction equipment exhaust. Further, construction odor emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of construction. Therefore, as the nearest sensitive receptor is approximately 0.5 miles to the southwest of the Proposed Project and through adherence with mandatory compliance with GBUAPCD Rule 401, construction activities or materials would not create objectionable odors or generate significant nuisance odors at off-site sensitive receptors.

Therefore, any impact associated with other emissions such as those leading to odors would be **less than significant.** 

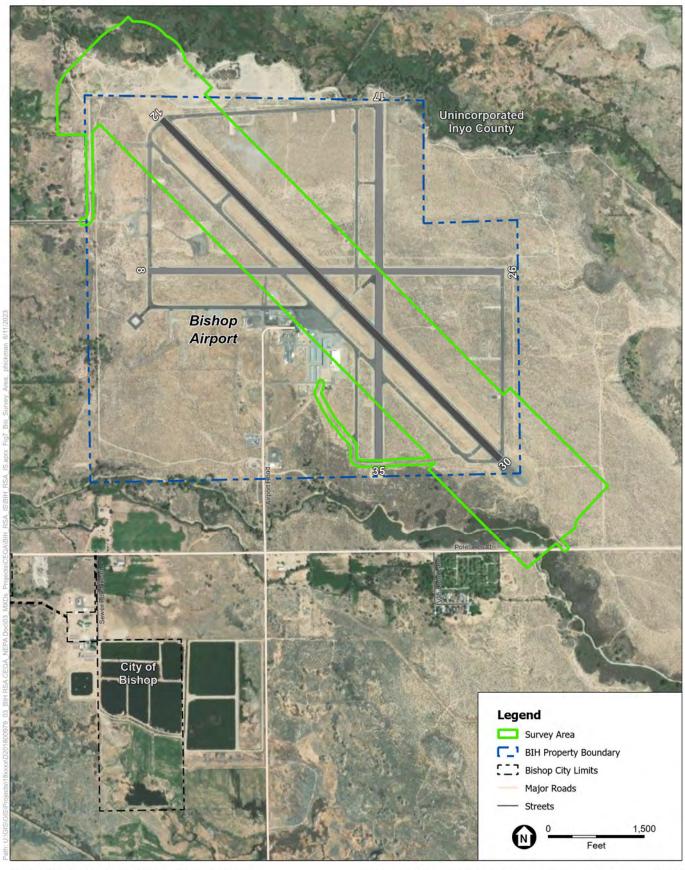
#### References

Environmental Science Associates, Runway 12/30 Runway Safety Area Improvement Project at Bishop Airport Air Quality and Climate Analysis, January 2023.

Inyo County General Plan, Goals and Policies Report, December 2001, p. 9-7.

## **Biological Resources**

| Issu | ues (and Supporting Information Sources):                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|
| IV.  | BIOLOGICAL RESOURCES — Would the project:                                                                                                                                                                                                                                                                     |                                      |                                                             |                                    |           |
| a)   | Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service? |                                      |                                                             |                                    |           |
| b)   | Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?                                                              |                                      |                                                             |                                    |           |
| c)   | Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?                                                                                     |                                      |                                                             |                                    |           |
| d)   | Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?                                                                               |                                      |                                                             |                                    |           |
| e)   | Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?                                                                                                                                                                              |                                      |                                                             |                                    |           |
| f)   | Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?                                                                                                                             |                                      |                                                             |                                    |           |


## **Technical Analysis**

A Biological Resources Technical report has been prepared in support of the Proposed Project and is included in **Appendix B**. The report was developed to characterize biological resources in the survey area, depicted in **Figure 7**, and propose measures to protect sensitive biological resources during construction of RSA improvements.

An aquatic resources delineation was conducted in accordance with the Corps of Engineers Wetlands Delineation Manual, A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States, Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region, and State Wetland Definition and Procedures for Discharges of Dredged or Fill Material to Waters of the State, where applicable. ESA also reviewed the U.S. Army Corps of Engineers (USACE) Sacramento District Minimum Standards for Acceptance of Aquatic Resources Delineation Reports, Updated Map and Drawing Standards for the South Pacific Division Regulatory Program, and Aquatic Resource Delineation Report Submittal Workshop for information to include in the report, figures, and supporting data.

The Proposed Project survey area encompasses approximately 403 acres and includes the area of the proposed RSA improvements along with a 100-foot buffer to account for moving wildlife and hydrological resources. Prior to performing reconnaissance biological surveys, ESA reviewed publicly available data, subscription-based biological resource data, and survey area-specific information.

The survey area primarily consists of upland habitat. This includes areas with a mixture of low-intensity development, open space, and shrub/scrub habitat. The open areas surrounding the runway are routinely graded and maintained by the Airport operations staff for general aviation usage, which requires low-growing vegetation. The area to the northwest of the survey area was previously used for gravel mining, and is largely abandoned, except for occasional off-highway vehicle use.



SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport

Figure 7
Biological Resources - Survey Area



#### **Discussion**

a) The Proposed Project would not include any ground disturbance within or immediately surrounding the survey area that may affect habitat or threatened or endangered species and there is no designated critical habitat within the survey area. No candidate, sensitive, or special-status species identified during site surveys would be substantially adversely affected, including the Northern Harrier, Yellow Warbler, and Yellow-breasted Chat (Appendix B Biological Resources Technical Report). The U.S. Fish and Wildlife Service (USFWS) has designated Critical Habitat for Owens Tui Chub and Fish Slough Milk-vetch, but this Critical Habitat does not exist on or adjacent to the survey area. Critical Habitat for the Western Yellow-billed Cuckoo is proposed and under review, but the closest proposed location is over 100 miles south of the survey area. Potential for the Southwestern Willow Flycatcher to inhabit the Proposed Project area was determined to be low and associated potential habitat was determined to be of low-quality. The Proposed Project would have no impact on federally listed fish, plant, and avian species within or immediately surrounding the survey area. Furthermore, the Proposed Project would have no impact on state species of special concern.

Due to unanticipated delays, approximately two years passed between the last reconnaissance survey for the Biological Resources Technical Report and the publication of the Draft Initial Study. Since the last reconnaissance survey in November 2022, the western burrowing owl has been determined to warrant protection under the California Endangered Species Act as a candidate for listing as a threatened or endangered species by the California Fish and Game Commission. The new status of the western burrowing owl and the potential for burrowing owls, nesting birds, and Owens Valley voles to have occupied the Proposed Project Area since the latest survey has prompted the California Department of Fish and Wildlife to recommend additional pre-construction surveys to confirm none of the species of concern are present. An adverse effect on any state species of special concern or its habitat would be a potentially significant impact. Therefore, mitigation measures will be implemented.

With implementation of **Mitigation Measures MM-BIO-1–6**, as described below, adverse effect on wildlife species and habitat would be **less than significant with mitigation incorporated**.

#### **Mitigation Measures**

MM-BIO-1: Burrowing Owl Habitat Assessment. Prior to any ground disturbance, a habitat assessment and burrow survey will be performed within the Project Area plus a surrounding 500-foot buffer. If no suitable burrows are detected, then no further surveys will be required.

MM-BIO-2: Burrowing Owl Breeding Season Surveys. If suitable burrows are detected, then four breeding season surveys of areas found to have potential for burrowing owl occupation must be conducted in accordance with the Staff Report on Burrowing Owl Mitigation (CDFG 2012 or most recent version).

Specifically, these reports suggest at least one site visit between February 15 and April 15 and a minimum of three surveys, at least three weeks apart, between the peak breeding season April 15 and July 15, with at least one visit after June 15. The surveys shall include 100 percent coverage of the Project site and include a minimum 500-foot buffer in adjacent habitat. A report summarizing the survey including all requirements for survey reports (page 30 of the 2012 Staff Report) shall be submitted to CDFW for review. If no burrowing owl, active burrowing owl burrows, or sign (molted feathers, cast pellets, prey remains, eggshell fragments, decoration, or excrement) thereof are found, no further action is necessary.

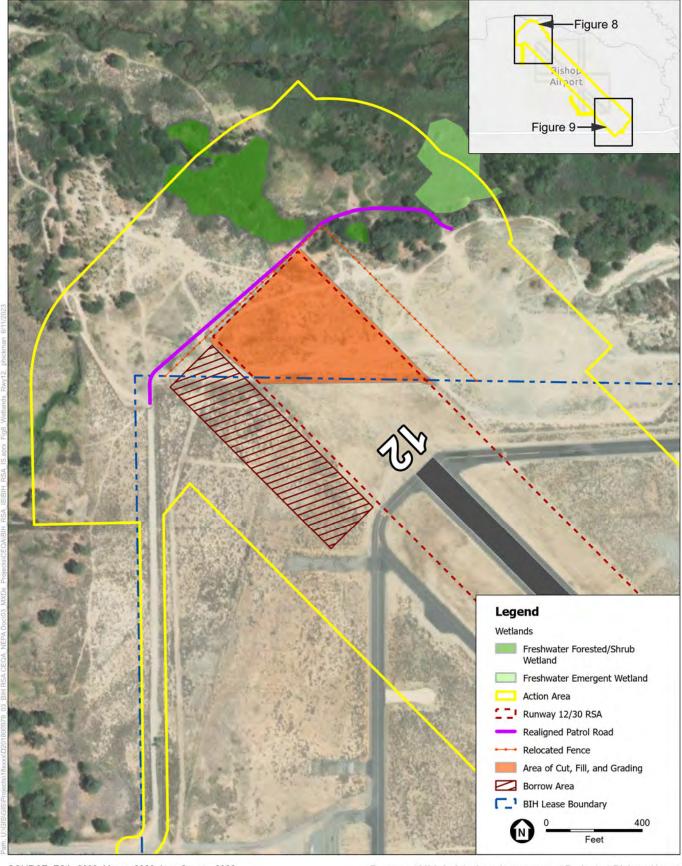
MM-BIO-3: Burrowing Owl Habitat Avoidance. If burrowing owl, active burrowing owl burrows, or sign thereof are found the qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be reviewed and approved by CDFW for review and approval at least 30 days prior to initiation of ground disturbing activities. The Burrowing Owl Plan shall describe proposed avoidance, minimization, and monitoring actions. The Burrowing Owl Plan shall include the number and location of occupied burrow sites, acres of burrowing owl habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed. Project activities shall not occur within 1,000 feet of an active burrow until CDFW approves the Burrowing Owl Plan. If the Project cannot ensure burrowing owls and their burrows are fully avoided, consultation with CDFW is warranted to discuss how to implement the Project and avoid take; or if avoidance is not feasible, to potentially acquire an ITP prior to any ground disturbing activities, pursuant Fish and Game Code section 2081 subdivision (b). Full mitigation often involves the permanent conservation of quality habitat benefiting the species through a conservation easement, along with habitat enhancement and ongoing management funded appropriately. Passive relocation, performed according to the Staff Report on Burrowing Owl Mitigation (CDGW, 2012) may be authorized through the incidental take permit as a minimization measure.

MM-BIO-4: Nesting Birds. The Project proponent expects that the proposed Project construction will commence in late 2024 and last approximately three months. Regardless of the time of year, nesting bird surveys shall be performed by a qualified avian biologist no more than three days prior to vegetation removal or ground-disturbing activities. Pre-construction surveys shall focus on both direct and indirect evidence of nesting, including nest locations and nesting behavior. The qualified avian biologist will make every effort to avoid potential nest predation as a result of survey and monitoring efforts. If active nests are found during the pre-construction nesting bird surveys, a qualified biologist shall establish an appropriate nest buffer to be delineated and flagged. Nest buffers are species specific and shall be at least 300 feet for passerines and 500 feet for raptors. A smaller or larger buffer may be determined by the qualified biologist

familiar with the nesting phenology of the nesting species and based on nest and buffer monitoring results. Construction activities may not occur inside the established buffers, which shall remain on site until a qualified biologist determines the young have fledged or the nest is no longer active. Active nests and adequacy of the established buffer distance shall be monitored daily by the qualified biologist until the qualified biologist has determined the young have fledged or the Project has been completed. The qualified biologist has the authority to stop work if nesting pairs exhibit signs of disturbance.

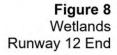
MM-BIO-5: Owens Valley Vole Habitat Assessment. Prior to any ground disturbance, a habitat assessment for Owens Valley Vole will be performed within the area traversed by the relocated patrol road, the only suitable habitat within the Proposed Project Area that would be impacted by Proposed Project implementation. If no active burrows or signs thereof (burrows, runways, scat) are found in this area, no further action is necessary.

MM-BIO-6: Owens Valley Vole Habitat Avoidance. If sign of current or past use by Owens Valley vole (burrows, runways, scat) is found within the construction area, a qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be reviewed and approved by CDFW. The Owens Valley vole Plan shall describe proposed avoidance, minimization, and monitoring actions. The Owens Valley vole Plan shall also include the number and location of occupied burrow sites, acres of Owens Valley vole habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed.

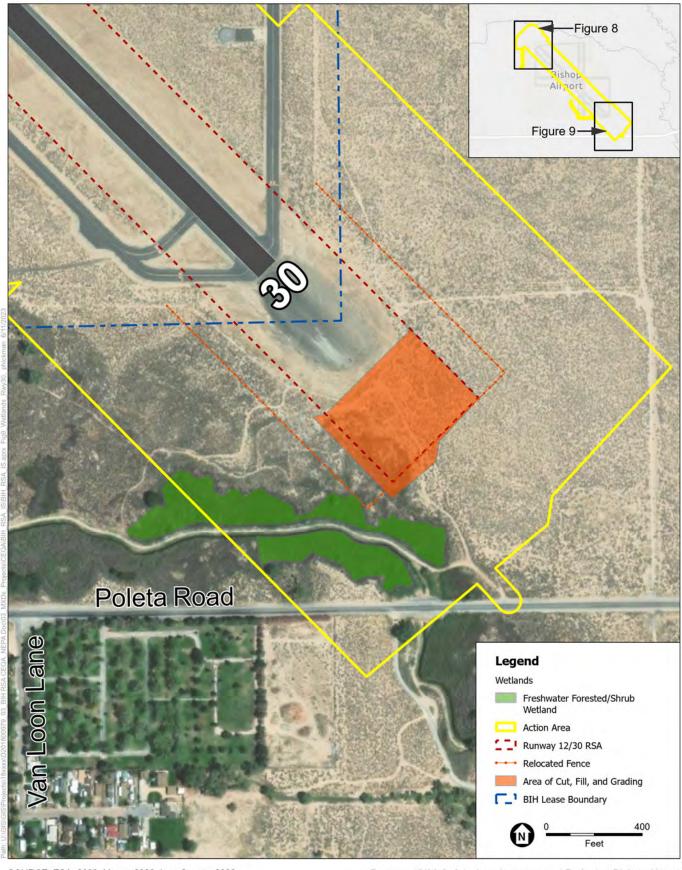

b) Rawson Canal (Water of the U.S. and State) is a perennial stream located on the southeastern end—beyond Runway 30—and is potential habitat for wetland and stream species (Appendix C Aquatic Resources Technical Report). The forested wetlands and scrub-shrub wetlands (willow shrubs and rose thicket) are located to the south along Rawson Canal are also considered to be riparian habitat. The proposed grading is approximately 100 feet north and would have no impact riparian habitat or other sensitive natural communities. Proposed grading at the south end of the Proposed Project Area would avoid Rawson Canal and adjacent riparian habitat by at least 100 feet. The installation of the LAWPD access road is likely to avoid impacts to riparian vegetation. However, removing riparian vegetation associated with North Fork Bishop Creek for road installation would be considered a potentially significant impact. With implementation of Mitigation Measures MM-BIO-7, as described below, any potentially adverse effect on riparian habitat would be less than significant with mitigation incorporated.

#### **Mitigation Measure**

MM-BIO-7: Riparian Habitat Notification. If, during the design phase of the Proposed Project, potential adverse impacts to riparian habitat associated with North Fork Bishop Creek are determined to be unavoidable, Inyo County will notify CDFW according to the California Fish and Game Code Section 1602. The notification shall include a quantification of riparian area impacted by the Proposed Project and description of post-Project restoration of impacts.

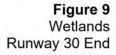

c) Wetland communities at the far north and south ends of the survey area were identified through research using the USFWS National Wetlands Inventory (NWI) database and field surveys conducted on November 1, 2022. The USFWS NWI identifies the presence of freshwater forested/shrub riparian habitat slightly within and adjacent to the survey area, but not within the proposed grading activities. **Figures 8** and **9** depict wetlands occurring proximate to the areas of cut, fill, and grading and other project elements. Field surveys confirm that these areas consist of perennial herbaceous vegetation, shrubby willow trees (Salix sp.), and rose (Rosa woodsii) bushes at the northern end—beyond Runway 12.

A stormwater pollution prevention plan (SWPPP) prepared in compliance with construction general permit requirements established in support of the Clean Water Act (CWA) would identify wetland areas proximate to the site and establish perimeter controls for erosion, sediment, and other potential pollutants. There would be no direct removal or modification of wetlands, marshes, vernal pools, or coastal wetlands by the Proposed Project (**Appendix C** Aquatic Resources Delineation), and the Proposed Project would have **no impact** on wetlands.




SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport








SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport





- d) According to the reconnaissance surveys associated with the Biological Resources
  Technical Report prepared for the Proposed Project, no state-listed species were observed
  within the survey area. The survey area is somewhat isolated from the habitat range for
  the Owens Valley Vole, Yellow-breasted Chat, burrowing owls, Yellow Warbler, and
  Northern Harrier. There are two mountain ranges on either side of Bishop and Owens
  Valley that can pose as barriers to migration for wildlife populations in the area. The
  survey area is currently used for the Bishop Airport runways and some off-road vehicle
  use. Wildlife can pass through or over fencing and can move through the survey area
  from surrounding areas. Surrounding non-disturbed areas provide access and movement
  for wildlife to move north/south throughout the region. There is no woody plant cover
  and little forage available for wildlife to reside in the survey area long term. The
  Proposed Project would have **no impact** on migratory wildlife corridors or nursery sites.
- e) The survey area is primarily existing disturbed or mowed areas that would be leveled and graded. Otherwise, the rabbitbrush/greasewood/saltbush shrub community is not suitable habitat for many of the potential sensitive or protected species. There are no nesting or perching trees within the survey area and is a suitable distance away from the project to avoid impacts to wildlife. Riparian areas that could be potential habitat for several species are outside the survey area and would not be impacted. The Proposed Project would have **no impact** on potential habitat for threatened or endangered species, and no proposed removal of trees or other biological resources protected by local policies or ordinances.
- f) The Proposed Project is consistent with airport industrial zoning that is part of comprehensive planning and master planning for the Airport and County. No conflicts exist with local, regional, or state habitat conservation plans. Thus, the Proposed Project would have **no impact** regarding conflicts with existing conservation plans.

#### References

Environmental Science Associates, Runway 12/30 Safety Area Improvement Project at Bishop Airport Biological Resources Technical Report, January 2023.

Environmental Science Associates, Runway 12/30 Safety Area Improvement Project at Bishop Airport Aquatic Resources Delineation Report, January 2023.

Construction Stormwater General Permit Order 2022-0057-DWQ, Attachment D, *Traditional Construction Risk Level Requirements*, September 2022.

# **Cultural Resources**

| Issues (and Supporting Information Sources): |                                                                                                            | Potentially<br>Significant<br>Impact | Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------|-----------|
| ٧.                                           | CULTURAL RESOURCES — Would the project:                                                                    |                                      |                                          |                                    |           |
| a)                                           | Cause a substantial adverse change in the significance of a historical resource pursuant to §15064.5?      |                                      |                                          | $\boxtimes$                        |           |
| b)                                           | Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5? |                                      |                                          | $\boxtimes$                        |           |
| c)                                           | Disturb any human remains, including those interred outside of dedicated cemeteries?                       |                                      |                                          | $\boxtimes$                        |           |

# **Technical Analysis**

A historical/archaeological resources records search was conducted at the Eastern Information Center of the California Historic Resources Information System (CHRIS) in 2020 in support of the environmental review for the introduction of commercial air passenger service at Bishop Airport. The results of this records search were also used to evaluate the Proposed Project's compliance with the requirements of Section 106 of the National Historic Preservation Act (54 U.S.C. §§ 300101-307108 (1966)) and to meet the requirements of both NEPA and CEQA. In furtherance of the Section 106 process, an Area of Potential Effects (APE) was delineated for the Proposed Project. The APE is shown on **Figure 10**. The APE for the Proposed Project includes the extent of all proposed construction work and staging areas, encompassing an area of approximately 9 acres within the Runway 12 safety area, and 6.5 acres within the Runway 30 safety area, and areas along the sides of Runway 12/30 which would be graded to a depth not exceeding 24 inches. The APE also vertically extends 20 feet below the ground level which represents the maximum depth of ground disturbance. The records search had three objectives:

- 1) determine whether known cultural resources have been recorded within the vicinity of the Bishop Airport property;
- 2) assess the likelihood for unrecorded cultural resources to be present based on historical references and the distribution of nearby sites; and
- 3) develop a context for the identification and preliminary evaluation of cultural resources.

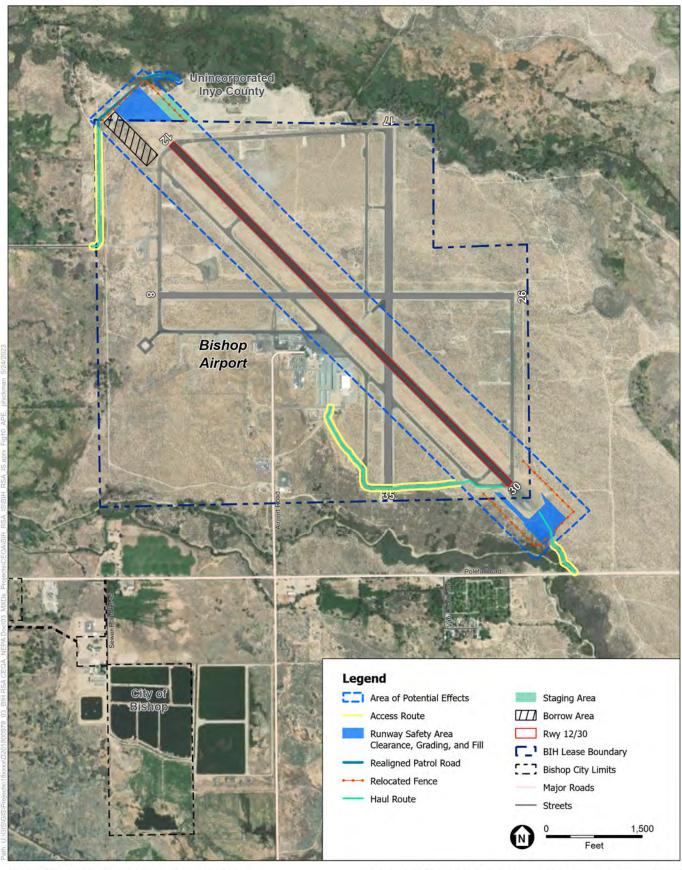
The results of the search were received in September of 2020 and indicated 14 cultural resources studies have been conducted within a 0.25-mile radius of <u>the APE</u>. Due to the sensitivity of these sites, their precise locations will not be disclosed in this document. However, any potential impacts will be assessed and documented.

The FAA, as lead agency on the NEPA EA being prepared for the Proposed Project, consulted verbally with California State Historic Preservation Office (SHPO) representative on March 15 May 20, 2024. The FAA described the Proposed Project, the APE, and the results of the CHRIS records search. The FAA is currently coordinating with the SHPO to deliver necessary materials.

The Draft Initial Study will be updated to include any determinations resulting from coordination with the SHPO. The SHPO's response was received on July 25, 2024, and it indicated the SHPO's concurrence that the APE was correctly delineated, and the Proposed Project would not adversely affect any historic properties.

Pursuant to Public Resources Code Section 21080.3.1, Inyo County consulted with California Native American tribes regarding the Proposed Project. Letters describing and providing formal notification of the Proposed Project was sent to eight tribes on January 14, 2023: the Big Pine Paiute Tribe of the Owens Valley, the Bishop Paiute Tribe, the Fort Independence Indian Community of Paiutes, the Lone Pine Paiute-Shoshone Tribe, the Timbisha Shoshone Tribe, the Twenty-Nine Palms Band of Mission Indians, the Cabazon Band of the Mission Indians, and the Torez Martinez Desert Cahuilla Indians. The letters requested a written response within 30 days if consultation with the tribes was desired. A Bishop Paiute Tribal member was present on-site during the cultural resources surface survey. Coordination and communication with the Bishop Paiute Tribe regarding the Proposed Project have taken place and is currently ongoing a representative of the Bishop Paiute Tribe is anticipated to be present during construction.

The Tribal Consultation process is discussed further in **Appendix D**.


## **Discussion**

a) The Proposed Project would involve areas of cut, fill, and grading in the RSA at each end of Runway 12/30. Additionally, approximately 5,300 feet of new fencing would be installed along the perimeter of the object free area, and a segment of a patrol road would be realigned around the improved RSA at the Runway 12 end. Although there are no cultural resources in the APE that are eligible for listing in the NRHP or the California Register of Historical Resources, there is a possibility previously unidentified cultural materials could be encountered during Project ground disturbing activities. To address this possibility, and to mitigate any potential adverse change in a historical resource, Inyo County would provide a cultural resources sensitivity and awareness training program for all personnel involved in Project construction, including field consultants and construction workers. The training program would be developed in coordination with a Secretary of the Interior-qualified archaeologist, and the County would invite affiliated Native American Tribal representatives to participate. The training program would impart information regarding sensitive cultural resources, including applicable regulations, protocols for avoidance, and consequences of violating State laws and regulations. The program would describe how to avoid and minimize the potential to disturb any heretofore unknown resources that may be in the Proposed Project vicinity and outline procedures to follow if any potential cultural resources are encountered. The training program would emphasize the requirement for confidentiality as well as culturally appropriate treatment of any discovery of significance to Native Americans.

Additionally, a Secretary of the Interior-qualified archaeologist would prepare a cultural resources monitoring plan prior to commencement of any construction activities. Components of this plan would include a detailed location map, individual monitoring

responsibilities, the format and content of monitoring reports, protocols to be followed in the event of cultural resource discovery, and methods of securing any discovered resources.

Incorporation of these protocols into Proposed Project construction activities should minimize potential for disturbances leading to an adverse change of a historical resource, and no known registered or eligible historic resource is located where ground disturbance would occur. Therefore, any adverse effect related to the change of a historical resource would be a **less than significant impact**.



SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport



No known archaeological resources have been documented in the areas where ground disturbance would occur. However, there is potential for previously unknown archaeological resources to be discovered during ground disturbance activities. To address this potential and avoid substantial adverse change in the significance of an archaeological resource, mitigation measures have been recommended for incorporation into all construction activities. In addition to the mitigation measures discussed in item (a) above, a protocol for the unanticipated discovery of archaeological resources would be established. This protocol would specify that all construction activities within a 100-foot radius would halt in the event pre-contact or historic-era archaeological resources are encountered during construction. This would be followed by an inspection of the find by a Secretary of the Interior-qualified archaeologist within 24 hours. If the find is deemed pre-contact<sup>7</sup>, affiliated Native American Tribal representatives would be invited to evaluate the find.

If the County determines, based on recommendations from a Secretary of the Interior-qualified archaeologist and affiliated Native American Tribal representatives, that the resource may qualify as a historic property, the resource would be avoided, if feasible. If avoidance is not feasible, the County would work with a Secretary of the Interior-qualified archaeologist and affiliated Native American Tribal representatives to determine treatment measures to avoid, minimize, or mitigate any potential impacts or adverse effects to the resource. This would include documentation of the resource and, if appropriate, data recovery or other actions such as treating the resource with culturally appropriate dignity and protecting the cultural character and integrity of the resource.

Incorporation of these protocols into Proposed Project construction activities should minimize potential for disturbances leading to an adverse change of an archaeological resource, and no known archaeological resource is located where ground disturbance would occur. Therefore, any potential for adverse effects related to the change of a historical resource would be **less than significant impact**.

No known human remains are present in the areas where ground disturbance would occur. However, there is always potential, if minimal, that previously undiscovered human remains could be uncovered during Proposed Project construction. To address this potential and mitigate any possible disturbance of human remains, a protocol for unanticipated discovery of human remains would be established. This protocol would specify all applicable State laws, including Section 7050.5 of the Health and Safety Code, will be followed in the event of discovery and recognition of human remains during construction. Furthermore, all construction activities within a 100-foot radius of the find will cease until the Inyo County Coroner Division has been contacted to determine that no investigation of the cause of death is required. The coroner will contact the Native American Heritage Commission within 24 hours if the coroner determines the remains to be Native American in origin. The Commission would then identify individuals determined most likely to have descended from the deceased. These individuals would

-

<sup>&</sup>lt;sup>7</sup> Approximately 12,000 Years Before Present (YBP)

then advise the County on the most appropriate treatment of the remains and any related funerary artifacts.

Incorporation of these protocols into Proposed Project construction activities should minimize potential for disturbances to human remains. Therefore, any potential for adverse effects related to the unanticipated discovery of human remains, including those interred outside of dedicated cemeteries, would be **less than significant impact**.

#### References

Environmental Science Associates, *Draft Cultural Resources Survey Report (Confidential)*, February 2023.

California Governor's Office of Planning and Research, CEQA Guidelines, Section 15064.5[d]

54 U.S.C. §§ 300101-307108 (1966), *National Historic Preservation Act.* 

California Public Resources Code, Section 21080.3.1

California Public Resources Code, Section 5097.98

California Health and Safety Code, Section 7050.5.

# Energy

| Issues (and Supporting Information Sources): |                                                                                                                                                                                | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact   |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-------------|
| VI.                                          | ENERGY — Would the project:                                                                                                                                                    |                                      |                                                    |                                    |             |
| a)                                           | Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation? |                                      |                                                    |                                    |             |
| b)                                           | Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?                                                                                     |                                      |                                                    |                                    | $\boxtimes$ |

#### **Discussion**

Proposed Project construction would involve cut, fill, and grading of 11.8 acres within a) the existing RSA for Runway 12/30. The grading would primarily involve filling areas of low elevation using cut material or material taken from an existing borrow area on the BIH premises. Construction energy consumption would result primarily from transportation fuels (e.g., diesel and gasoline) used for haul trucks, heavy-duty construction equipment, and construction workers traveling to and from the project limits. Project construction would be performed by professional contractors and would not be anticipated to result in inefficient or unnecessary consumption of fuel resources. While not anticipated, construction could occur during nighttime hours, and electricity consumption for construction lighting would be supplied by diesel-powered generators, as there are no other accessible power sources at either end of Runway 12/30. However, even if nighttime construction were to occur, this fuel consumption would be minimal and is not anticipated to have an adverse impact on available fuel supplies. Therefore, no impacts on fuel or electricity supply and infrastructure associated with short-term construction activities would occur. Operation of on-site construction equipment would be conducted in accordance with best practices and applicable regulations, and no unnecessary consumption of energy resources is anticipated.

The Proposed Project would establish a standard RSA for Runway 12/30 at BIH. This would not induce any new aviation operations or other fuel consuming activity beyond the construction phases. Thus, regarding wasteful, inefficient, or unnecessary consumption of energy resources, the Proposed Project would be anticipated to have a **less than significant impact**.

b) The Proposed Project would cut, fill, and grade uneven terrain to provide a standard RSA Runway 12/30 at BIH. No energy consuming facilities would be constructed. None of the Proposed Project elements would conflict with the energy efficiency or renewable energy policies of the Inyo County General Plan. Neither would any aspect of the Proposed Project conflict with the *Energy Efficiency Strategic Plan* adopted by the California Public Utilities Commission or the *Desert Renewable Energy Conservation Plan* adopted by the California Energy Commission. Therefore, regarding conflicts with or obstruction

of any state or local plans for renewable energy or energy efficiency, the Proposed Project would have **no impact**.

## References

California Energy Commission, Desert Renewable Energy Conservation Plan, September 2016.

California Public Utilities Commission, Energy Efficiency Strategic Plan, January 2011.

Inyo County, Inyo County General Plan, Chapter 8.10, Energy Efficiency.

Inyo County, Inyo County Renewable Energy General Plan Amendment, March 28, 2015.

# Geology and Soils

|      |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     | Potentially<br>Significant | Less Than<br>Significant with<br>Mitigation | Less Than<br>Significant |           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|--------------------------|-----------|
| Issu | es (a                                                                                                                                                                                                                            | nd Supporting Information Sources):                                                                                                                                                                                                                                                 | Impact                     | Incorporated                                | Impact                   | No Impact |
| VII. | GE                                                                                                                                                                                                                               | OLOGY AND SOILS — Would the project:                                                                                                                                                                                                                                                |                            |                                             |                          |           |
| a)   | adv                                                                                                                                                                                                                              | ectly or indirectly cause potential substantial<br>erse effects, including the risk of loss, injury, or<br>th involving:                                                                                                                                                            |                            |                                             |                          |           |
|      | i)                                                                                                                                                                                                                               | Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42. |                            |                                             |                          |           |
|      | ii)                                                                                                                                                                                                                              | Strong seismic ground shaking?                                                                                                                                                                                                                                                      |                            |                                             | $\boxtimes$              |           |
|      | iii)                                                                                                                                                                                                                             | Seismic-related ground failure, including liquefaction?                                                                                                                                                                                                                             |                            |                                             |                          |           |
|      | iv)                                                                                                                                                                                                                              | Landslides?                                                                                                                                                                                                                                                                         |                            |                                             | $\boxtimes$              |           |
| b)   | Res                                                                                                                                                                                                                              | sult in substantial soil erosion or the loss of topsoil?                                                                                                                                                                                                                            |                            |                                             | $\boxtimes$              |           |
| c)   | Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse? |                                                                                                                                                                                                                                                                                     |                            |                                             |                          |           |
| d)   | Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?                                                                 |                                                                                                                                                                                                                                                                                     |                            |                                             |                          |           |
| e)   | Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?                                                |                                                                                                                                                                                                                                                                                     |                            |                                             |                          |           |
| f)   |                                                                                                                                                                                                                                  | ectly or indirectly destroy a unique paleontological ource or site or unique geologic feature?                                                                                                                                                                                      |                            |                                             |                          |           |

#### **Discussion**

- a.i) The Proposed Project site is proximate to the Fish Slough Fault within the Eastern California Shear Zone. According to the California Department of Conservation's interactive Earthquake Hazards Zone mapping application, a portion of the area of cut, fill, and grading would occur on a parcel which lies, partially or in total, in an Alquist-Priolo Earthquake Fault Zone. The Proposed Project would involve earth moving in the form of cut, fill, and grading, but ground disturbance would be limited to a depth of no greater than 20 feet at any point. However, the areas of cut, fill, and grading are outside of the fault zone, and no rupture of a fault would be anticipated. Therefore, any potential for death or injury due to rupture of an earthquake fault would represent a **less than significant impact**.
- a.ii) Construction of the Proposed Project would involve cut, fill, and grading to achieve a standard RSA for Runway 12/30 at BIH. No habitable structures or activities associated with concentrations of people would be introduced to any of the altered areas. The

presence of construction personnel would be temporary, and construction activity would take place outside of identified fault zones. Thus, any potential for death or injury due to seismic ground shaking associated with the Proposed Project would be a **less than significant impact**.

- a.iii) The Proposed Project would provide a standard RSA for Runway 12/30 at BIH. No habitable structures or impervious surfaces would be constructed as part of the Proposed Project. Soil would be properly compacted to maintain a uniform surface according to all applicable regulations. The resulting RSA would be left clear of any structures or activity in order to preserve aviation safety. The Proposed Project would not occur in any liquefaction zone as mapped by the California Department of Conservation. No ground failure or liquefaction would be anticipated to occur and no structures would be affected if such an event occurred. Therefore, any potential for death or injury due seismic-related ground failure would be a **less than significant impact**.
- a.iv) The RSA improvements would be graded to achieve a uniform grade within the RSA. The finished surface in the RSA would transition to the existing grade at an appropriate slope according to best practices and all applicable regulations. The compacted fill would remain free of structures or other loads to be supported, and The Proposed Project would not occur in any landslide zone as mapped by the California Department of Conservation. Therefore, potential for death or injury due to landslides would be a **less than significant impact**.
- b) The RSA improvements would be graded to achieve a uniform grade within the RSA. The finished surface in the RSA would transition to the existing grade at an appropriate slope according to best practices and all applicable regulations. Likewise, erosion prevention measures would be implemented during and after construction. Therefore, potential for erosion or loss of topsoil would be a **less than significant impact**.
- c) No element of the Proposed Project would be located on a fault zone, liquefaction zone or landslide zone as mapped by the California Department of Conservation. The grading occurring within the RSA would be performed according to best practices and all applicable regulations to achieve the appropriate level of compaction and avoid any onor off-site landslide, lateral spreading, subsidence, liquefaction, or collapse. Therefore, potential for any of these occurrences would be considered a less than significant impact.
- d) The Proposed Project elements are located on soils generally coarse in texture and not prone to expansion. No habitable structures would be constructed as part of the Proposed Project, and human activities would be restricted from the RSA. Therefore, any risk to life or property due to expansive soils would be considered a **less than significant impact**.
- e) No habitable structures requiring septic tanks or sewer service are included in the Proposed Project. Human activity would be restricted from the RSA. Thus, no septic tank or other sewer alternative would need to be supported by the soils associated with the

- Proposed Projects. There is **no impact** regarding adequate support for the use of septic tanks or alternative waste water disposal systems.
- f) The Proposed Project construction would occur in areas devoid of unique geological features or known paleontological resources in accordance with best practices, construction would be monitored to avoid disturbance of any as yet undiscovered paleontological resources. Any potential to destroy unique paleontological resources or geological features would be a **less than significant impact**.

## References

California Department of Conservation, EQ Zapp: *California Earthquake Hazards Zone Application*, < https://maps.conservation.ca.gov/cgs/EQZApp/app/>. Accessed March 14, 2023.

# Greenhouse Gas Emissions

| Issues (and Supporting Information Sources): |                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-----------|
| VIII                                         | . GREENHOUSE GAS EMISSIONS — Would the project:                                                                               |                                      |                                                    |                                    |           |
| a)                                           | Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?      |                                      |                                                    |                                    |           |
| b)                                           | Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases? |                                      |                                                    |                                    |           |

## **Discussion**

a) Construction activities associated with the Proposed Project would result in emissions of carbon dioxide (CO2) and, to a lesser extent, methane (CH4) and nitrous oxide (N2O). Construction-period greenhouse gas (GHG) emissions were estimated with the same CalEEMod emissions software and EMFAC2021 emission factors and based on the same construction schedule and activities as described above in the Air Quality Section. For the purposes of CEQA analysis, GBUAPCD uses the MDAQMD daily 548,000 pounds per day and annual 100,000 tons carbon dioxide equivalent (CO2e) per year standards as their regional significance thresholds. The MDAQMD's threshold was developed to meet the mandate of Assembly Bill (AB) 32 for emissions reduced to 1990 levels by 2020. As the Proposed Project would be constructed and operational after 2020, this analysis also considers an adjusted threshold of 328,800 pounds per day and 60,000 tons (54,431 metric tons) CO<sub>2e</sub> per year, reflecting the Senate Bill (SB) 32 madidate of 40 percent reductions below 1990 levels by 2030. The Proposed Project's construction GHG emissions are shown in Table 4. As indicated in the table, the construction emissions for the Proposed Project would not exceed any annual or daily GHG thresholds established by the MDAQMD. Therefore, impacts related to the GHG emissions emitted by the Proposed Project would be less than significant.

TABLE 4
PROPOSED PROJECT CONSTRUCTION GREENHOUSE GAS EMISSIONS

| Emissions Sources                         | CO <sub>2e</sub> (Metric Tons per Year) | CO <sub>2e</sub> (lbs/day) |
|-------------------------------------------|-----------------------------------------|----------------------------|
| Off-Road Equipment                        | 860                                     | 30,794                     |
| On-Road Sources                           | 95                                      | 14,728                     |
| Water and Office                          | 112                                     | 2,722                      |
| Project Total GHG Emissions               | 1,067                                   | 48,244                     |
| MDAQMD Significance Threshold             | 90,719                                  | 548,000                    |
| MDAQMD Adjusted Significance<br>Threshold | 54,431                                  | 328,800                    |
| Significant Impact?                       | No                                      | No                         |

 $NOTES: Totals\ may\ not\ add\ up\ exactly\ due\ to\ rounding.\ Refer\ to\ Appendix\ A\ of\ this\ IS/MND\ for\ details.$ 

SOURCE: ESA, 2023

b) The State of California has enacted several laws and the governor has signed at least three executive orders regarding GHGs. AB 32 (the Global Warming Solutions Act), passed by the California legislature on August 31, 2006, required the State's global warming emissions to be reduced to 1990 levels by 2020. The reduction was accomplished by 2016 through an enforceable statewide cap on GHG emissions that was phased in starting in 2012. Per AB 32, the California Air Resources Board (CARB) must develop a Scoping Plan to describe the approach California will take to reduce GHGs to meet these goals and must update the Plan every five years. SB 32 expanded upon AB 32 to require statewide GHG emissions to be reduced to 40 percent below 1990 levels by 2030.

The temporary construction schedule (approximately 3 months) and resultant emissions would not significantly impact GHG levels. As shown in **Table 4** above, the Proposed Project would not exceed the MDAQMD's daily and annual project level thresholds developed to meet the reduction mandates of AB 32 or the adjusted 2030 threshold meeting the reduction mandates of SB 32 in 2030. Therefore, the Proposed Project is not anticipated to conflict with any applicable plans, policies, or regulations adopted for the purpose of reducing the emissions of greenhouse gases such as AB 32, SB 32, and CARB's Climate Change Scoping Plan. Therefore, any conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases would be a **less than significant impact**.

The greenhouse gas emissions analysis is described further in Appendix A.

## References

Environmental Science Associates, Runway 12/30 Runway Safety Area Improvement Project at Bishop Airport Air Quality and Climate Analysis, January 2023.

# Hazards and Hazardous Materials

| Issu | es (and Supporting Information Sources):                                                                                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|
| IX.  | HAZARDS AND HAZARDOUS MATERIALS — Would the project:                                                                                                                                                                                                                             |                                      |                                                             |                                    |           |
| a)   | Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?                                                                                                                                             |                                      |                                                             |                                    |           |
| b)   | Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?                                                                                     |                                      |                                                             |                                    |           |
| c)   | Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?                                                                                                                     |                                      |                                                             |                                    |           |
| d)   | Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?                                                      |                                      |                                                             |                                    |           |
| e)   | For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area? |                                      |                                                             |                                    |           |
| f)   | Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                           |                                      |                                                             | $\boxtimes$                        |           |
| g)   | Expose people or structures, either directly or indirectly, to a significant risk of loss, injury, or death involving wildland fires?                                                                                                                                            |                                      |                                                             |                                    |           |

#### **Discussion**

The Proposed Project involves cut, fill, and grading portions of the Runway 12/30 RSA a) to attain a standard RSA. This would also involve realignment of existing fencing and a segment of a patrol road. No change in operations or activity at BIH would be associated with completion of the Proposed Project, and no on-going activities involving hazardous materials would be introduced or expanded by the Proposed Project. Proposed Project Construction would involve use of vehicles and equipment operation of which would require fuels, lubricants, oils, solvents, and other potentially hazardous materials. The accidental release of hazardous materials due to the improper transport and handling of the common hazardous materials associated with the construction of the proposed could potentially occur. However, the transport, storage, and use of hazardous materials is regulated through various federal, state, and local laws and policies, enforced by multiple departments at local, municipal, and state levels. Hazardous materials, when used for construction activities according to their intended use and in compliance with existing laws and policies, would not present a significant threat to public health or the environment. Therefore, any associated impact would be less than significant.

- b) The Proposed Project's purpose is to improve safety conditions at BIH by achieving a standard RSA for Runway 12/30 wherein most human activity would be restricted. The Proposed Project would not introduce or expand any on-going activities involving hazardous materials at BIH.
  - Construction activities associated with the Proposed Project would be performed in accordance with best practices and all applicable regulations addressing the handling of hazardous materials, and no Resource Conservation and Recovery Act (RCRA) or other known sites associated with hazardous materials are present in areas of ground disturbance. Hazardous materials, when used for construction activities according to their intended purpose and in compliance with existing laws and policies, would not present a significant threat to public health or the environment. Thus, any hazard to the public or environment related to release of hazardous materials due to upset or accident would be a **less than significant impact**.
- c) The Proposed Project areas of ground disturbance are more than one mile from the nearest school, and no new school sites are proposed within one-quarter mile of any Proposed Project element. Therefore, there would be **no impact** concerning any emission of hazardous substances or handling of hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school.
- d) No known hazardous materials sites as described in Government Code Section 65962.5 are located within any areas of ground disturbance associated with the Proposed Project. Any risk associated with being located on a hazardous materials site would be a less than significant impact.
- e) The Proposed Project is located within the airport influence area for BIH and would achieve a standard RSA for Runway 12/30 at BIH which would enhance safety for aviation operations. The Proposed Project would also reduce third-party risk by enclosing the RSA within security fencing surrounding the airfield. This is consistent with the objectives of the *Inyo County Policy Plan and Airport Comprehensive Land Use Plan*. Furthermore, the Proposed Project would not induce any residential development or noise emitting activities with potential to disturb residential areas. Therefore, any potential effects related to creation of a safety hazard or excessive noise for people residing or working in the project area would be a **less than significant impact**.
- f) All Proposed Project elements are intended to enhance safety at BIH by clearing, grading, and enclosing the RSA for Runway 12/30. This would not interfere with implementation of or physically interfere with any emergency response plan or emergency evacuation plan. All existing access and egress points at the BIH airfield would be maintained. ARFF teams would actually have improved access to all portions of the RSA, as existing fencing would be realigned to include the entire RSA within the BIH security perimeter. Therefore, any adverse effect related to interference with implementation of an emergency response plan, emergency evacuation plan or associated physical access would be a **less than significant impact**.

g) The Proposed Project would occur in a Fire Hazard Severity Zone classified as "high" per the Office of the State Fire Marshal's 2022 Fire Hazard Severity Zones Map for Inyo County. However, no habitable structures are included with any element of the Proposed Project. Thus, no structures would be introduced which could pose a potential risk regarding wildfires. Proposed Project construction would be performed according to best practices and all applicable regulations regarding fire prevention, and no habitable structures occur within one-quarter mile of the Proposed Project elements. Therefore, any potential for loss, injury, or death associated with the Proposed Project would be a less than significant impact.

## References

Inyo County, *Inyo County Policy Plan and Airport Comprehensive Land Use Plan*, December 1991.

California Office of the State Fire Marshal, *Fire Hazard Severity Zones Map*, <a href="https://egis.fire.ca.gov/FHSZ/">https://egis.fire.ca.gov/FHSZ/</a>. Accessed March 16, 2023.

# Hydrology and Water Quality

| Issu | ıes (a                                                                                                                                                                                                              | nd Supporting Information Sources):                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|
| X.   |                                                                                                                                                                                                                     | TOROLOGY AND WATER QUALITY — buld the project:                                                                                                                                                    |                                      |                                                             |                                    |           |
| a)   | disc                                                                                                                                                                                                                | late any water quality standards or waste charge requirements or otherwise substantially rade surface or ground water quality?                                                                    |                                      |                                                             |                                    |           |
| b)   | inte<br>that                                                                                                                                                                                                        | ostantially decrease groundwater supplies or<br>rfere substantially with groundwater recharge such<br>the project may impede sustainable groundwater<br>nagement of the basin?                    |                                      |                                                             |                                    |           |
| c)   | Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would: |                                                                                                                                                                                                   |                                      |                                                             |                                    |           |
|      | i)                                                                                                                                                                                                                  | result in substantial erosion or siltation on- or off-<br>site;                                                                                                                                   |                                      |                                                             | $\boxtimes$                        |           |
|      | ii)                                                                                                                                                                                                                 | substantially increase the rate or amount of<br>surface runoff in a manner which would result in<br>flooding on- or offsite;                                                                      |                                      |                                                             |                                    |           |
|      | iii)                                                                                                                                                                                                                | create or contribute runoff water which would<br>exceed the capacity of existing or planned<br>stormwater drainage systems or provide<br>substantial additional sources of polluted runoff;<br>or |                                      |                                                             |                                    |           |
|      | iv)                                                                                                                                                                                                                 | impede or redirect flood flows?                                                                                                                                                                   |                                      |                                                             | $\boxtimes$                        |           |
| d)   |                                                                                                                                                                                                                     | ood hazard, tsunami, or seiche zones, risk release ollutants due to project inundation?                                                                                                           |                                      |                                                             |                                    |           |
| e)   | qua                                                                                                                                                                                                                 | nflict with or obstruct implementation of a water<br>lity control plan or sustainable groundwater<br>nagement plan?                                                                               |                                      |                                                             |                                    |           |

## **Discussion**

a) The Proposed Project would include areas of cut, fill, and grading as well as relocation of segments of fencing and a patrol road. These improvements would be implemented to achieve a standard RSA for Runway 12/30 at BIH. No new structures or impervious surfaces would be introduced as part of the Proposed Project. No change in aviation activity would be anticipated upon Proposed Project completion, and no increase in waste discharge or non-point source pollutants would be expected. The cut, fill, and grading activities occurring during construction would require the use of heavy equipment onsite, potentially including excavators, bulldozers, semi-trucks, and other grading equipment. This would disturb existing surface vegetation and surface sediments at the project site. The loosening of surficial soil could result in increased erosion from the project site, as well as an increase in sedimentation downstream in the event of a storm. Thus, construction of the Proposed Project could potentially result in increased sediment loads downstream.

In addition to sediment, the use of heavy machinery on site would increase potential for construction related pollutant discharge during storm events. Construction related oils, greases, fuels, and other potential construction-period water quality pollutants could become intermingled with stormwater, resulting in degraded water quality downstream.

Proposed Project construction would be performed in compliance with the state National Pollutant Discharge Elimination System (NPDES) General Construction Permit and any subsequent General Permit in effect at the time of project construction. The applicable permits authorize stormwater and authorized non-stormwater discharges from County construction activities and would be required prior to commencement of the construction phase of the project. As part of this permit requirement, a SWPPP would be prepared prior to construction consistent with the requirements of the Regional Water Quality Control Board (RWQCB). The SWPPP would incorporate all applicable best management practices (BMPs) to ensure that adequate measures are taken during construction to minimize water quality impacts. Compliance with applicable regulatory requirements would ensure that the project construction impacts to water quality would be **less than significant**.

- b) The Proposed Project would not introduce any facilities which would generate demand on groundwater supplies. Recharge to the groundwater system in the GSA is primarily attributable to precipitation in the Owens River valley and from runoff from the Sierra Nevada Mountains. The cut, fill, and grading which would occur under the Proposed Project would be limited to a depth of 20 feet would not be anticipated to substantially interfere with groundwater flows through the site. Increases in demand for groundwater supplies associated with construction activities would be temporary and are not expected to substantially decrease groundwater supplies. Therefore, any potential for a substantial decrease in groundwater supplies or interference with groundwater recharge would be a less than significant impact.
- c.i) The Proposed Project would involve cut, fill, and grading to raise areas of low elevation for the purpose of achieving a uniform grade in the Runway 12/30 RSA. As indicated in Appendix C, no streambeds or other surface water courses would be modified as part of the Proposed Project. Transitions to existing grades outside the RSA would be stabilized with appropriate erosion control measures in keeping with industry best practices and all applicable regulations. Likewise, appropriate barriers would be emplaced to prevent silt from entering nearby streambeds during ground disturbance activities. Thus, any potential adverse effect related to substantial erosion or siltation on- or off-site would be a less than significant impact.
- c.ii) The Proposed Project would not introduce any new impervious surfaces. Finished grades would be sloped appropriately to avoid excessive rates of stormwater flow, and runoff would be conveyed in accordance with BMPs and all applicable regulations. The Proposed Project would raise areas of 100-year floodplains totaling approximately 0.7 acres and another 0.2 acres of 500-year floodplain. **Figures 11** and **12** depict the areas of floodplains situated in areas where cut, fill, and grading would occur. However, the

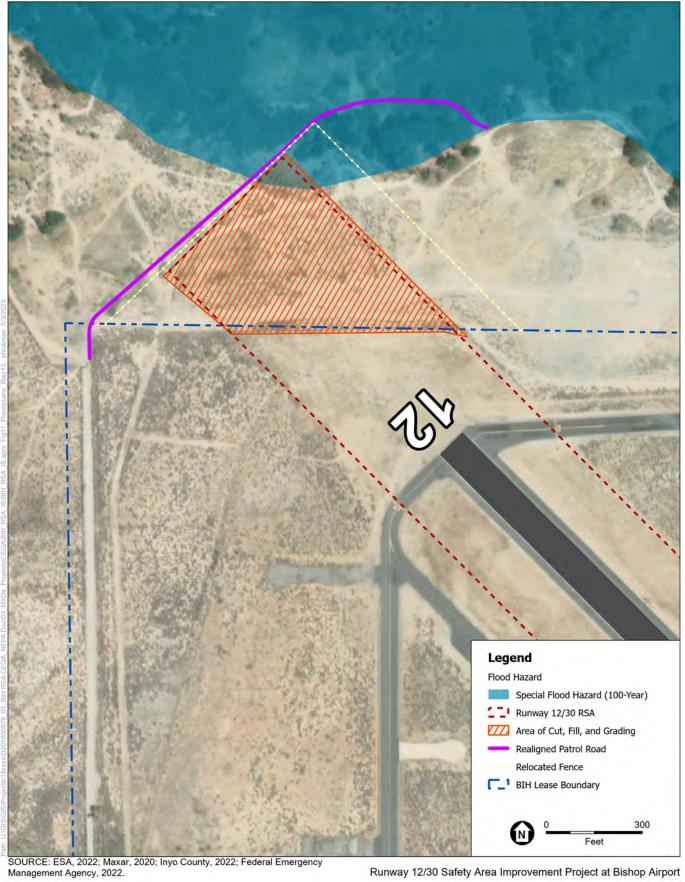
Proposed Project would not impact natural and beneficial floodplain values. The Proposed Project would shore up an existing area within the floodplain through cutting, filling, and grading. This would have a negligible effect on the flow of floodwater and is not likely to result in an alteration of flood water flow that could produce unacceptable upstream or downstream flooding. Therefore, any adverse impact associated with a substantial increase in the rate or amount of surface runoff resulting in flooding on- or off-site would be a **less than significant impact**.

- c.iii) As stated in item c.ii above, the Proposed Project would not introduce impervious surfaces which would intensify stormwater flows. Finished grades within the RSA would be relatively flat per FAA design standards. Stormwater runoff would be conveyed in accordance with best management practices and all applicable regulations. No additional aircraft operations or other airfield activities would be induced by the Proposed Project, and no associated increase in exposure to pollutants would be anticipated. Existing stormwater conveyance and capture infrastructure would continue to avert non-point source pollution at BIH. Therefore, any potential adverse effects associated with runoff in exceedance of capacity of existing or planned stormwater drainage systems or introduction of sources of pollution would be a **less than significant impact**.
  - c.iv) As stated in item c.ii above, the Proposed Project would raise areas of 100-year floodplains totaling approximately 0.7 acres and another 0.2 acres of 500-year floodplain. However, this action would have a negligible effect on the flow of floodwater and is not likely to result in an alteration of flood water flow that could produce unacceptable upstream or downstream flooding. The general flow of floodwaters would not be significantly altered, as the 0.7 acres of 100-year floodplain affected represents approximately 0.3 percent of the 205.8 acres of 100-year floodplains present in the surrounding Proposed Project area. Therefore, floodwater flows would continue to follow the same courses, and any potential adverse impact related to the direction of floodwater flows would be a **less than significant impact**.
- d) The Proposed Project would involve cut, fill, and grading within the RSA for Runway 12/30 which would raise some areas of existing floodplains. As the surface elevation of these areas would be raised out of the floodplain, any potential for inundation of the RSA would be decreased by the Proposed Project. Furthermore, the finished grade within the RSA would not accommodate use or storage of pollutants. During construction, all fuels or other potential pollutants would be stored and handled in accordance with best practices and all applicable regulations. Construction activities would temporarily halt in the event of precipitation which could result in site flooding. Therefore, inundation of the Proposed Project site during construction would be unlikely to result in a substantial release of pollutants. As such, any risk associated with release of pollutants due to project inundation would be a **less than significant impact**.
- e) The Owens Valley Groundwater Authority (OVGA) completed a Groundwater Sustainability Plan (GSP) for the Owens Valley in December 2021. However, the Proposed Project would occur on LADWP-owned lands not subject to the Sustainable

Groundwater Management Act (SGMA). The basin for the Owens Valley is considered a low-priority basin for the purposes of the SGMA, and the GSP's goal regarding sustainability is to monitor groundwater quality through implementation of a monitoring network and database. The Proposed Project would not interfere with any aquifers or groundwater monitoring wells. The Proposed Project elements would not occur on land subject to the GSP, nor would any Proposed Project element interfere generally with the sustainability goals of the GSP.

The land on which the Proposed Project elements would occur is owned by the LADWP and administrated according to the OVLMP. The OVLMP includes a River Management Plan, the goals include: 1) Continue to supply water to the City of Los Angeles; 2) implementation of sustainable land management agricultural and other resource practices; 3) continue providing recreational opportunities; 4) improvement of biodiversity and ecosystem health; and 5) and protection of endangered species habitat. The improvement of the Runway 12/30 RSA would achieve applicable FAA standards, and no significant impacts conflicting with the goals of the OVLMP River Management Plan would occur as a result of the Proposed Project.

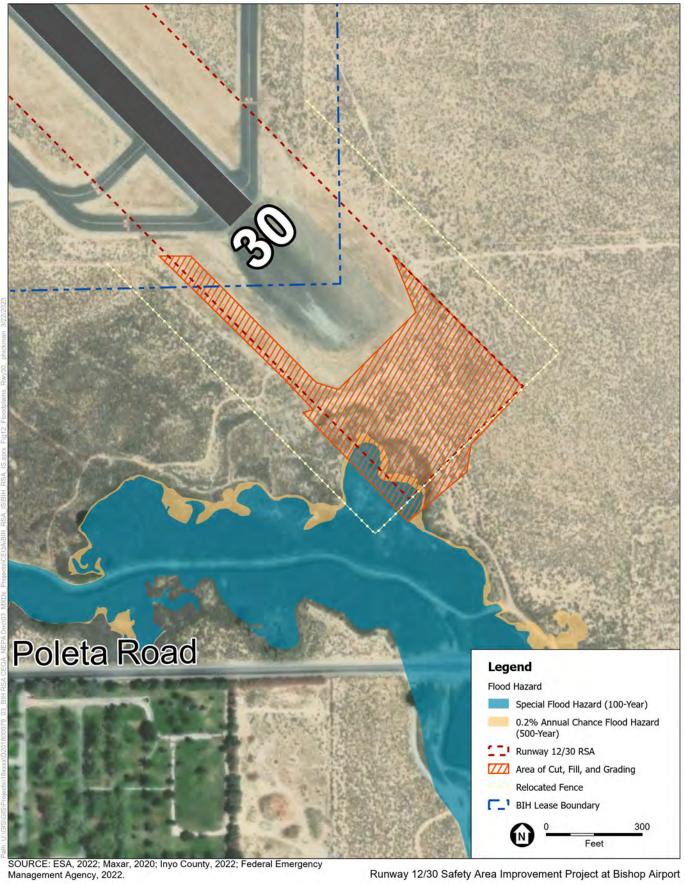
As the Proposed Project would not substantially interfere with the implementation of the OVLMP River Management Plan or the GSP, any potential for conflict with or obstruction of implementation of a water quality control plan or sustainable groundwater management plan would be a **less than significant impact**.


## References

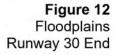
Environmental Science Associates, Runway 12/30 Safety Area Improvement Project at Bishop Airport Aquatic Resources Delineation Report, January 2023.

Los Angeles Department of Power and Water and Ecosystem Sciences, *Owens Valley Land Management Plan*, April 28, 2010. p. 2-1.

Owens Valley Groundwater Authority, *Owens Valley Groundwater Basin Final Groundwater Sustainability Plan*, December 9, 2021. p. 5.


Sustainable Groundwater Management Act, 2014.




ESA

turiway 12/30 Salety Alea Improvement Project at Bishop Airpor

Figure 11 Floodplains Runway 12 End



Runway 12/30 Safety Area Improvement Project at Bishop Airport





# Land Use and Planning

| Issues (and Supporting Information Sources): |                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-------------|
| XI.                                          | LAND USE AND PLANNING — Would the project:                                                                                                                                          |                                      |                                                    |                                    |             |
| a)                                           | Physically divide an established community?                                                                                                                                         |                                      |                                                    |                                    | $\boxtimes$ |
| b)                                           | Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? |                                      |                                                    |                                    |             |

#### **Discussion**

- a) The Proposed Project elements would occur on nonresidential parcels and be located more than one-quarter mile from the nearest existing residential development. While some Proposed Project Elements would extend beyond the BIH lease boundary, the affected lands are undeveloped and within an existing airport easement boundary. No established communities are proximate to the project site, and no inhabited areas would be physically divided. Therefore, the Proposed Project would have **no impact** concerning division of any established communities.
- b) The Proposed Project would occur on areas identified as being part of an Area of Specific Concern by the Owens Valley Land Management Plan (OVLMP). However, the nature of the environmental concern in this area is related to recreational management and remediating damage due to recreational overuse of the land. Establishing a standard RSA would not induce recreational visits to the affected areas and there are no conflicts with the recreational management goals of the OVLMP.

The area of the RSA beyond the Runway 12 end extends into land designated for both Agriculture (A) and Natural Resources (NR) by the Inyo County General Plan and zoned as Open Space (OS-40). However, "[a]irports, landing fields and airstrips" are conditionally allowed per the Inyo County Zoning Ordinance, and the Proposed Project elements would occur within an existing airport easement boundary. The area of the RSA beyond the Runway 30 end extends into land designated for Agriculture (A) and, as at the Runway 12 end, is zoned as OS-40. While livestock grazing generally occurs in the general surroundings of the area to be cut, filled, and graded, this land is not identified as farmland of statewide importance, and airport uses are conditionally allowed per the OS-40 zoning designation. Therefore, any impact related to conflict with an existing land use plan would be a **less than significant impact**.

# References

Los Angeles Department of Power and Water and Ecosystem Sciences, *Owens Valley Land Management Plan*, April 28, 2010. P. 4-11.

Inyo County General Plan, December 2001, p. 4-24.

Inyo County Code §18.12.040.

# Mineral Resources

| Issues (and Supporting Information Sources): |                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-----------|
| XII.                                         | MINERAL RESOURCES — Would the project:                                                                                                                              |                                      |                                                    |                                    |           |
| a)                                           | Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?                                 |                                      |                                                    | $\boxtimes$                        |           |
| b)                                           | Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan? |                                      |                                                    |                                    |           |

#### **Discussion**

- a) A portion of the Proposed Project area at the Runway 12 end would occur on land previously leased by Hiatt Sand and Gravel for operation of an open pit mine for extraction of material to be used as aggregate. Mining operations ceased in 2010, and the lease holder, 711 Materials Inc., closed the mine per the conditions of the associated reclamation plan. The reclamation was completed in 2022 and the area was removed from the 711 Materials Inc leasehold. No known mineral resources are currently present on the Proposed Project site, and no associated loss of availability of mineral resources would be anticipated to occur upon implementation. Therefore, any adverse effect on availability of known mineral resources would be a less than significant impact.
- b) No mineral resource recovery sites are currently identified in areas which would be affected by or the Proposed Project elements. No local planning documents or maps designated any of the areas within the Proposed Project GSA as mineral resource recovery sites. Thus, there would be **no impact** concerning loss of availability of a locally-important mineral resource recovery site delineated on any local land use plan.

#### References

| Intro | Country | Dlanning      | Commission | Staff Report, | Oatobar 25  | 2021 n   | 2  |
|-------|---------|---------------|------------|---------------|-------------|----------|----|
| шуо   | County, | riaiiiiiig    | Commission | Starr Report. | October 23. | 2021. p. | Ζ. |
| 2     | ,       | $\mathcal{C}$ |            | 1 /           | ,           | 1        |    |

## Noise

| Issu | es (and Supporting Information Sources):                                                                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|
| XIII | NOISE — Would the project result in:                                                                                                                                                                                                                                                                   |                                      |                                                             |                                    |           |
| a)   | Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?                                                         |                                      |                                                             | $\boxtimes$                        |           |
| b)   | Generation of excessive groundborne vibration or groundborne noise levels?                                                                                                                                                                                                                             |                                      |                                                             | $\boxtimes$                        |           |
| c)   | For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? |                                      |                                                             |                                    |           |

## **Discussion**

a) The Proposed Project would improve the RSA for Runway 12/30 at BIH to meet design standards and safety requirements established by the FAA. In addition, an existing unpaved patrol road running through the RSA beyond the Runway 12 end would be relocated to outside the runway OFA and existing perimeter fencing would be removed from beyond both the Runway 12 and Runway 30 ends and new fencing would be installed beyond the OFA boundary. The Proposed Project would enhance safety around Runway 12/30 at the Airport. However, it is not intended to increase airfield operational capacity and would not induce any additional aviation activity.

BIH is located in unincorporated Inyo County. Policy NOI-1.1 in the Public Safety Element of the *Inyo County General Plan* establishes acceptable noise limits for evaluating project compatibility related to noise. Policy NOI-1.4 addresses transportation-related noise and requires a noise impact analysis in areas where current or future noise levels from transportation sources exceeds Day-Night Average Sound Level (Ldn) 65 dB.<sup>8</sup> The nearest residential uses are located approximately 1,400 feet from the project area, south of Poleta Road. A cemetery is located approximately 700 feet from the project area, adjacent to the residential use.

There would be no change in the number or type of aviation operations at BIH related to the Proposed Project. However, there would be a slight change in the shape of the noise exposure contours due to the cessation of declared distances use and the ability of aircraft to utilize the entire runway length. An analysis of the noise produced by the proposed elimination of declared distances included in the Proposed Project has been conducted using the FAA's Aviation Environmental Design Tool version 3e (AEDT 3e), the latest version of the model available. As part of the noise analysis community noise equivalent

-

Bay-Night Average Sound Level (Ldn or DNL) is a noise metric that describes cumulative noise exposure from all events over a 24-hour period, with a 10 dB "penalty" applied to nighttime hours (between 10pm and 7am).

level (CNEL) contours have been generated to depict potential aviation noise exposure resulting from the Proposed Project. The existing CNEL contours for Bishop Airport are depicted on **Figure 13**, and the Proposed Project CNEL contours are depicted on **Figure 14**.

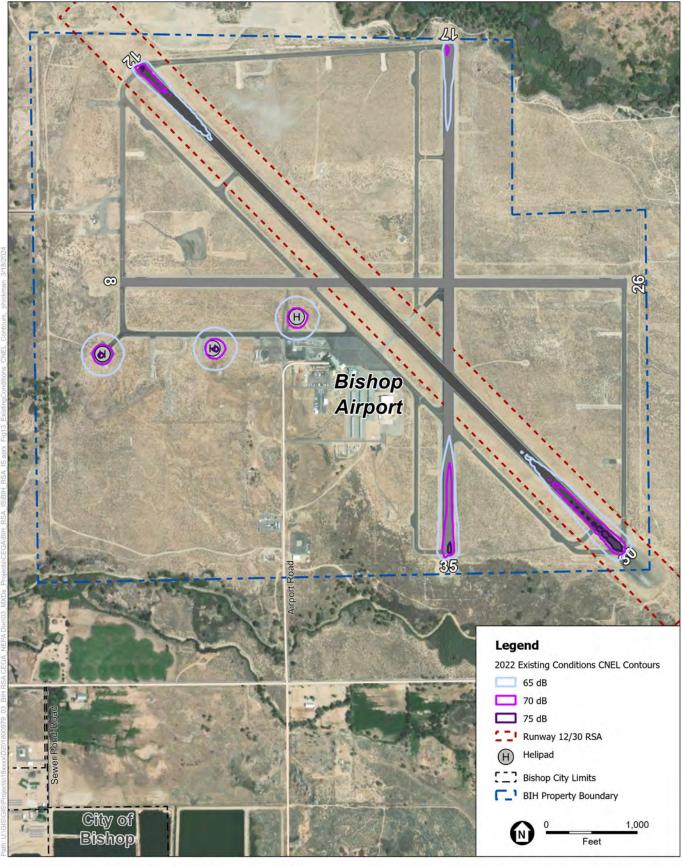
The Proposed Project CNEL 65 dB contour extends beyond the Airport lease boundary to encompass approximately 5,000 square feet of land designated for agricultural use and zoned for open space. However, this represents a small portion of the adjacent property and would not conflict with the applicable Inyo County General Plan policies, as this area is located several hundred feet from the nearest noise sensitive receptors.

The only other noise directly attributable to the Proposed Project would be temporary construction noise associated with the cutting, filling, and grading of the proposed RSA improvements. Inyo County has no construction noise ordinance; however, the general plan includes noise policies applicable to construction activities within 500 feet of existing noise sensitive uses. The Proposed Project area is located well beyond 500 feet from the nearest noise sensitive land use, and best practices such as adherence to established construction hours and operation of equipment compliant with all applicable regulations, would be employed during the construction period. Therefore, the Proposed Project would not produce a substantial temporary or permanent increase in ambient noise levels beyond the Airport in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies and any impact would be **less than significant**.

- b) The Proposed Project includes potential noise and vibration impacts from construction activity. Construction activities including site preparation, grading, and skimming associated with the Proposed Project would generate temporary and short-term noise and vibration and would be limited to the Airport property. The Proposed Project area is located well beyond 500 feet from the nearest noise sensitive land use, which is in accordance with the *Inyo County General Plan*. Furthermore, best practices such as adherence to established construction hours and operation of equipment compliant with all applicable regulations would be employed during the construction period to reduce the potential for noise-related impacts. Accordingly, the Proposed Project would not produce excessive construction-related groundborne vibration or groundborne noise. Therefore, any impact associated with the generation of groundborne vibration or groundborne noise would be **less than significant**.
- c) The area on and off the Airport lease area is devoid of uses such as homes or schools. The nearest residential uses are located approximately 1,400 feet from the project area, south of Poleta Road. Furthermore, construction activity will primarily be limited to the runway and runway environs, away from areas where people will be working at the Airport. Accordingly, the Proposed Project would not expose people residing or working

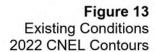
\_

Ommunity Noise Exposure Level (CNEL) is a noise metric that describes cumulative noise exposure from all events over a 24-hour period, with a 5-dB "penalty" applied to evening hours (between 7 PM and 10 PM), and a 10-dB "penalty" applied to nighttime hours (between 10 PM and 7 AM).

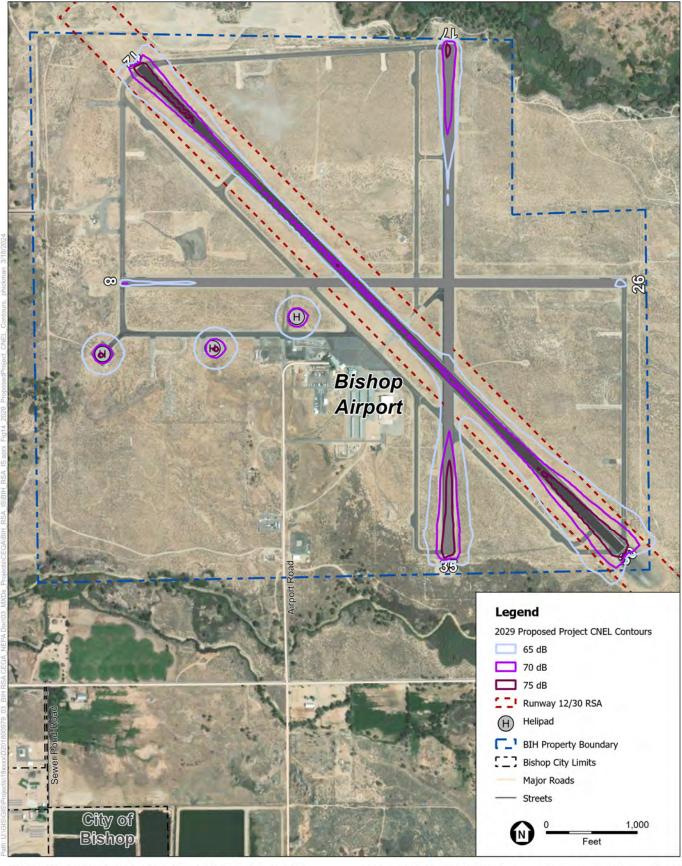

in the project area to excessive noise levels and any impact would be **less than significant**.

## References

Inyo County, *Goals and Policies Report for the Inyo County General Plan*, December 2001. <a href="https://www.inyocounty.us/sites/default/files/2020-02/GP%20Goals%20and%20Policy%20Report%2012.2001.pdf">https://www.inyocounty.us/sites/default/files/2020-02/GP%20Goals%20and%20Policy%20Report%2012.2001.pdf</a>. Accessed May 1, 2023.


Inyo County, General Plan, December 2001,

<a href="https://www.inyocounty.us/sites/default/files/2020-02/GP%20Goals%20and%20Policy%20Report%2012.2001.pdf">https://www.inyocounty.us/sites/default/files/2020-02/GP%20Goals%20and%20Policy%20Report%2012.2001.pdf</a>. Accessed May 1, 2023.




SOURCE: ESA, 2022; AEDT 3e, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport







SOURCE: ESA, 2022; AEDT 3e, 2022; Maxar, 2020; Inyo County, 2022.

Runway 12/30 Safety Area Improvement Project at Bishop Airport



# Population and Housing

| Issues (and Supporting Information Sources):                                                                                                                                                                                 | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-----------|
| XIV. POPULATION AND HOUSING — Would the project:                                                                                                                                                                             |                                      |                                                    |                                    |           |
| a) Induce substantial unplanned population growth in an<br>area, either directly (for example, by proposing new<br>homes and businesses) or indirectly (for example,<br>through extension of roads or other infrastructure)? |                                      |                                                    |                                    |           |
| b) Displace substantial numbers of existing people or<br>housing, necessitating the construction of<br>replacement housing elsewhere?                                                                                        |                                      |                                                    |                                    |           |

# **Discussion**

- a) The Proposed Project would include cut, fill, and grading as well as realignment of segments of existing fencing and a patrol road to achieve a standard RSA for Runway 12/30. No new public roads or utility infrastructure would be included with the Proposed Project. The completed RSA improvements would enhance the safety of Runway 12/30 but are not anticipated to have a growth inducing effect on aviation operations or any other airport activities with potential to influence population growth directly or indirectly. Therefore, there would be **no impact** due to substantial unplanned population growth.
- b) The Proposed Project elements would occur in unpopulated areas. No people or housing would be displaced either directly or indirectly by the Proposed Project. Furthermore, no future housing has been planned in the Proposed Project areas of cut, fill, or grading due to safety considerations. Therefore, there would be **no impact** due to displacement of existing populations or housing.

## References

Inyo County General Plan, December 2001, Diagram 8.

# **Public Services**

| Issu | es (aı        | nd Supporting Information Sources):                                                                                                                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact   |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-------------|
| XV.  | PU            | IBLIC SERVICES —                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                    |                                    |             |
| a)   | physical perf | uld the project result in substantial adverse sical impacts associated with the provision of new physically altered governmental facilities, need for or physically altered governmental facilities, the struction of which could cause significant ironmental impacts, in order to maintain eptable service ratios, response times or other formance objectives for any of the following public vices: |                                      |                                                    |                                    |             |
|      | i)            | Fire protection?                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                                    |                                    | $\boxtimes$ |
|      | ii)           | Police protection?                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                                    |                                    | $\boxtimes$ |
|      | iii)          | Schools?                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                    |                                    | $\boxtimes$ |
|      | iv)           | Parks?                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                                                    |                                    | $\boxtimes$ |
|      | v)            | Other public facilities?                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                    |                                    | $\boxtimes$ |

# **Discussion**

a.i-v) The Proposed Project would include areas of cut, fill, and grading as well as relocated sections of fencing and patrol road. These enhancements would achieve a standard RSA for Runway 12/30 at BIH. No habitable structures or other facilities would be introduced as part of the Proposed Project, and no new or expanded governmental facilities would need to be constructed to meet any need for public services. Thus, there would be **no impact** associated with provision of new or physically altered governmental facilities.

# Recreation

| Issu | es (and Supporting Information Sources):                                                                                                                                                                    | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | vith Less Than<br>n Significant |             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|---------------------------------|-------------|
| XVI. | RECREATION —                                                                                                                                                                                                |                                      |                                                    |                                 |             |
| a)   | Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? |                                      |                                                    |                                 |             |
| b)   | Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?                        |                                      |                                                    |                                 | $\boxtimes$ |

# **Discussion**

- a) The Proposed Project would not introduce new population or activities that increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated. This impact would be **less than significant**.
- b) The Proposed Project would not include recreational facilities or require the construction or expansion of recreational facilities. There would be **no impact** under this significance criterion.

# **Transportation**

|    | ues (and Supporting Information Sources):                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-------------|
| ΧV | II. TRANSPORTATION — Would the project:                                                                                                                       |                                      |                                                             |                                    |             |
| a) | Conflict with a program plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?           |                                      |                                                             | $\boxtimes$                        |             |
| b) | Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?                                                          |                                      |                                                             |                                    |             |
| c) | Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? |                                      |                                                             |                                    |             |
| d) | Result in inadequate emergency access?                                                                                                                        |                                      |                                                             |                                    | $\boxtimes$ |

# **Discussion**

a) Vehicular traffic associated with the Proposed Project would be limited to construction activities, such as personnel traveling to and from the project site, transport of materials (e.g., fill dirt) and equipment, and operation of heavy equipment (i.e., nonroad vehicles). Vehicles would travel to and from the project site using roads in the City of Bishop and unincorporated Inyo County, as well as on a state highway (Highway 395) under the jurisdiction of Caltrans. The most direct route to and from the Airport and the surrounding road network is along East Line Street/Poleta Road. East Line Street connects to Highway 395, the main thoroughfare through the City of Bishop and the primary highway that runs the length of the Eastern Sierra region. While nonroad equipment would be used as a result of the Proposed Project, this equipment would be limited to the areas surrounding the project site and would not operate on major thoroughfares.

Typically, agencies with authority over transportation facilities will adopt a level of service (LOS) threshold in their policy documents for purposes of evaluating how well a road is operating. While the City of Bishop has not adopted a level of service (LOS) standard for its roadway network, the *Inyo County General Plan* Circulation Element identifies LOS "C" as its minimum acceptable LOS, as does Caltrans on right of way under its control, including Highway 395. Per the *Inyo County Regional Transportation Plan*, Highway 395 through Bishop and up to the Mono County line was operating at LOS A in 2010 and is anticipated to continue operating at LOS A through 2035. Further, in 2016 the annual average daily traffic volume at the intersections of Highway 395 and SR 168 (West Line Street) was 15,600 vehicles.

Given that vehicular traffic would be limited to construction activities, which are anticipated to be temporary and short-term, the contribution of traffic to/from the Airport associated with the Proposed Project would be minor. It is unlikely that the minimal traffic contributed by the Proposed Project would increase traffic volumes on East Line Street or Highway 395 to such a degree that a substantial reduction in LOS would result.

Further, heavy construction equipment would not operate on major thoroughfares and would be limited to the areas surrounding the project site. Accordingly, while the Proposed Project would result in an increase in surface traffic, these activities would not conflict with a program plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities, and this impact would be **less than significant**.

- DEQA Guidelines section 15064.3, Determining the Significance of Transportation Impacts, describes specific considerations for evaluating a project's transportation impacts and states that, generally, vehicle miles traveled (VMT), which refers to the amount and distance of automobile travel attributable to a project, is the most appropriate measure of transportation impacts. Section 15064.3, subdivision (b) (2) states that transportation projects that reduce, or have no impact on, VMT should be presumed to cause a less than significant transportation impact. As discussed above, the Proposed Project would result in minor increases in traffic on local roadways and regional highways due to temporary and short-term construction activities. Consequently, the Proposed Project would not conflict or be inconsistent with CEQA Guidelines Section 15064.3, subdivision (b). This impact would be **less than significant**.
- The Proposed Project would not alter any existing facilities or roadway infrastructure. The realignment of a segment of existing patrol road would not involve any paving or substantial sitework. The use of this patrol road is limited to employees of the Los Angeles Department of Water and Power Watershed Protection Division who would be traveling at relatively low speeds, and the realignment would not introduce any acute curves or other geometric features. There would be **no impact** related to this significance criterion.
- d) The Proposed Project would not introduce any physical elements on major transportation thoroughfares which could potentially degrade the adequacy of existing emergency access. All existing service roads would be maintained or realigned to preserve accessibility to the airfield. There would be **no impact** related to this significance criterion.

## References

Inyo County, *Regional Transportation Plan*, September 9. 2019. <a href="https://www.inyocounty.us/sites/default/files/2022-08/Final%20Inyo%202019%20RTPreduced.pdf">https://www.inyocounty.us/sites/default/files/2022-08/Final%20Inyo%202019%20RTPreduced.pdf</a>>. Accessed May 3, 2023.

# **Tribal Cultural Resources**

|    | -               | nd Supporting Information Sources):                                                                                                                                                                                                                                                                                                                                                                                   | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-----------|
| a) |                 | RIBAL CULTURAL RESOURCES — uld the project cause a substantial adverse change                                                                                                                                                                                                                                                                                                                                         |                                      |                                                             |                                    |           |
| ,  | in the site geo | the significance of a tribal cultural resource, defined Public Resources Code section 21074 as either a strength of the feature, place, cultural landscape that is orgraphically defined in terms of the size and scope the landscape, sacred place, or object with cultural use to a California Native American tribe, and that                                                                                      |                                      |                                                             |                                    |           |
|    | i)              | Listed or eligible for listing in the California<br>Register of Historical Resources, or in a local<br>register of historical resources as defined in Public<br>Resources. Code Section 5020.1(k), or                                                                                                                                                                                                                 |                                      |                                                             |                                    |           |
|    | ii)             | A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe. |                                      |                                                             |                                    |           |

# **Discussion**

a.i-ii) A cultural resources survey conducted for the Proposed Project determined there are no listed or eligible state or local historic resources located in the Proposed Project's APE where physical development would occur. There is an existing archaeological site of tribal cultural significance listed on the NRHP situated within one-quarter mile of the Airport property. Due to the sensitivity of the site, the precise location relative to BIH is not disclosed in this document. However, the site is not within an area that would undergo any ground disturbance or accommodate any surface activity due to the Proposed Project. Ground disturbing activities would be limited to construction and include cutting, filling, and grading portions of the Runway 12/30 RSA which are currently in a non-standard condition. Much of these activities would be in locations where prior ground disturbance has occurred, and a cultural resources survey discovered no indication of sites or materials of tribal significance.

In accordance with California AB 52, the Airport has notified applicable California Tribal Historic Preservation Officers (THPOs), and consultation is currently ongoing. As of publication, t The Bishop Paiute Tribe has-responded with a request for a meeting with Inyo County personnel to informally discuss the Proposed Project, and a representative of the Bishop Paiute Tribe was on-site when the cultural resources surface survey was conducted. This meeting is still tentative pending a response regarding availability of the THPO. A Bishop Paiute Tribal representative is also anticipated to be present during construction. The Tribal Consultation process is discussed further in Appendix D.

Although there are no cultural resources in the APE that are eligible for listing in the California Register of Historical Resources or any local register of historic resources, there is a possibility previously unidentified cultural materials could be encountered during Proposed Project ground disturbing activities. Per state law, the establishment of protocols for unanticipated discoveries of artifacts and human remains is required for ground disturbing activities to abate any potential adverse change in a historical resource. Adherence to those provisions would provide safeguards to address the already low potential for encountering cultural resources during construction.

Recommended best management practices would include cultural resources awareness training for all personnel involved in Proposed Project construction and adherence to a cultural resources monitoring plan. Additionally, monitoring by tribal representatives during construction is recommended and should be encouraged. Following construction there would be no further activity in the RSA with potential to disturb cultural resources. Thus, any potential impact to tribal cultural resources would be a **less than significant impact**.

# References

Environmental Science Associates, Bishop Airport Runway Safety Area Improvement Project Draft Cultural Resources Survey Report, February 2023.

California Code of Regulations, Section 15064.5(d)-(f).

# **Utilities and Service Systems**

| Issu | es (and Supporting Information Sources):                                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-------------|
| XIX  | UTILITIES AND SERVICE SYSTEMS — Would the project:                                                                                                                                                                                                                                |                                      |                                                             |                                    |             |
| a)   | Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects? |                                      |                                                             |                                    |             |
| b)   | Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?                                                                                                                            |                                      |                                                             |                                    |             |
| c)   | Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?                                                    |                                      |                                                             |                                    |             |
| d)   | Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?                                                                                              |                                      |                                                             |                                    |             |
| e)   | Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?                                                                                                                                                                   |                                      |                                                             |                                    | $\boxtimes$ |

#### **Discussion**

a) The Proposed Project would cut, fill, and grade areas of uneven terrain and relocate an existing segment fencing as well as a segment of patrol road. However, no impervious surfaces would be introduced as the finished grade of the RSA and the patrol road would remain unpaved. Although the new finished grade would alter flows of stormwater drainage, the Proposed Project grading plans would direct stormwater flows in accordance with best management practices and all applicable regulations, and no significant impact associated with construction or relocation of expanded stormwater drainage would be anticipated.

No new or expanded water, wastewater, electric power, natural gas, or telecommunications facilities would be necessary to complete any Proposed Project elements. Therefore, any environmental effects associated with relocation or construction of utilities and service systems would be considered a **less than significant impact**.

b) Water needs at BIH are met by two on-Airport wells: a domestic well and a fire suppression well. The domestic well is currently planned for decommission in the next 10 years, but the fire suppression well is expected to continue meeting anticipated future water needs at the Airport. At present, the groundwater aquifer supplying water to BIH is regularly replenished by abundant runoff from the Sierra Nevada Mountains. This water supply currently meets potable water and fire suppression needs at BIH and would be sufficient to meet demands during the construction phase of the Proposed Project. The

Proposed Project does not include any new habitable structures or other facilities which would require a supply of water. Therefore, the Proposed Project's effect on water supply requirements would have a **less than significant impact**.

- Project does not include any habitable structures or other facilities and would not increase demand on existing wastewater treatment capacity beyond the construction phase. Any wastewater generated during the construction phase would be transported from the site in accordance with all applicable regulations by an appropriately qualified and credentialed sanitation services provider. The increase in wastewater treatment demand during Proposed Project construction would be temporary and is not anticipated to exceed the available capacity. Any increase of demand for wastewater treatment induced by the Proposed Project would be confined to the construction phase and represent a **less than significant impact**.
- d) The Proposed Project would not involve any permanent structures or activities which would generate solid waste beyond the construction phases.

Proposed Project construction would entail cutting, filling, and grading portions of the RSA as well as realigning existing segments of fence line and patrol road. Areas where clearing and grubbing would occur are sparsely vegetated, and a minimal volume of vegetation waste would need to be transported from the site. Site grading would primarily involve filling areas of lower elevation to provide an even grade and is not expected to generate excess cut material for transport to any landfill or recycling facility. Other solid waste generated during construction would be collected and transported off site per the construction waste management plan and all applicable regulations.

Solid waste produced by Airport activities is transported to the closest disposal site at Bishop-Sunland Landfill located approximately four miles southwest of the Airport on Sunland Reservation Road. The local landfill is operated by Inyo County on land leased from LADWP. According to the CalRecycle Solid Waste Information System, the Bishop-Sunland Landfill has a maximum permitted capacity of 160 tons of solid waste per day and a cease operation date of 2064. The landfill has a capacity of 6 million cubic yards with a remaining capacity of 3.3 million cubic yards. The landfill also accepts recyclable materials such as wood, metal, cardboard, paper, electronic waste, universal waste, glass, plastic, aluminum, mattresses, carpet, and various electronics. Thus, the Proposed Project's potential to generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure would be a **less than significant impact**.

e) A construction waste management plan would be implemented by the contractor to handle the minimal volume of solid waste expected to be generated during construction. All solid waste generated during construction would be collected and transported off site to the local landfill or recycling facility, as appropriate, per the construction waste management plan and all applicable regulations. The Proposed Project would have **no** 

**impact** regarding any failure to comply with federal, state, or local management and reduction statutes or regulations related to solid waste.

# References

CalRecycle, SWIS Facility/Site Activity Details, Bishop Sunland Solid Waste Site (14-AA-0005), <a href="https://www2.calrecycle.ca.gov/SolidWaste/SiteActivity/Details/4236?siteID=648">https://www2.calrecycle.ca.gov/SolidWaste/SiteActivity/Details/4236?siteID=648</a>. Accessed November 29, 2022.

# Wildfire

| Issu | ues (and Supporting Information Sources):                                                                                                                                                                                                                       | Potentially<br>Significant<br>Impact | Less Than<br>Significant with<br>Mitigation<br>Incorporated | Less Than<br>Significant<br>Impact | No Impact   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------|-------------|
| XX.  | <b>WILDFIRE</b> — If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:                                                                                                              |                                      |                                                             |                                    |             |
| a)   | Substantially impair an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                                           |                                      |                                                             |                                    | $\boxtimes$ |
| b)   | Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?                                                       |                                      |                                                             |                                    |             |
| c)   | Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment? |                                      |                                                             |                                    |             |
| d)   | Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?                                                                            |                                      |                                                             |                                    |             |

# **Discussion**

a-d) The entirety of the Proposed Project GSA is located in a fire hazard severity zone classified as "high" according to the Office of the State Fire Marshal's *Fire Hazard Severity Zones Map*. The nearest "very high" fire hazard severity zone is located more than 30 miles away from the GSA. Therefore, the Proposed Project would have **no impact** regarding adverse effects of development in a very high fire hazard severity zone.

# References

California Office of the State Fire Marshal, *Fire Hazard Severity Zones Map*, <a href="https://egis.fire.ca.gov/FHSZ/">https://egis.fire.ca.gov/FHSZ/</a>. Accessed March 16, 2023.

# Mandatory Findings of Significance

| Issues (and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Supporting Information Sources):                                                                                                                                                                                                                                                                                                                                                                                                              | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporated | Less Than<br>Significant<br>Impact | No Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------|-----------|
| XXI. MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NDATORY FINDINGS OF SIGNIFICANCE —                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                                    |                                    |           |
| degrareduce fish of levels comments for real comments for the real first formula for the | the project have the potential to substantially ade the quality of the environment, substantially be the habitat of a fish or wildlife species, cause a provide propulation to drop below self-sustaining statements, threaten to eliminate a plant or animal munity, substantially reduce the number or restrict ange of a rare or endangered plant or animal or mate important examples of the major periods of prinia history or prehistory? |                                      |                                                    |                                    |           |
| limite<br>consi<br>proje<br>with t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the project have impacts that are individually d, but cumulatively considerable? ("Cumulatively iderable" means that the incremental effects of a ct are considerable when viewed in connection the effects of past projects, the effects of other nt projects, and the effects of probable future cts)?                                                                                                                                        |                                      |                                                    |                                    |           |
| cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the project have environmental effects which will e substantial adverse effects on human beings, r directly or indirectly?                                                                                                                                                                                                                                                                                                                      |                                      |                                                    |                                    |           |

# **Discussion**

- a) The Proposed Project would encompass cutting, filling, and grading portions of the Runway 12/30 RSA to achieve the even grades and obstacle-free terrain characteristic of a standard RSA. A segment of unpaved patrol road would also be realigned around the outer perimeter of the RSA. The area where these activities would primarily occur has largely been previously disturbed. Areas where previously undisturbed land would be filled and graded do not include any critical habitat or populations of rare or endangered plant or animal species. No delineated wetlands would be encroached upon by the construction activities associated with the Runway 12/30 RSA improvements. There would be some floodplain encroachment, as 0.7 acres of 100-year floodplain and 0.2 acres of 500-year floodplain would be filled and raised with embankments. However, no other physical structures or populations would be sited in areas of inundation, and any effects on flows of floodwaters would be minimal. No examples of major periods of California history or prehistory are known to exist within the areas that would undergo physical ground disturbance. Therefore, any impact would be less than significant.
- b) The effects of the Proposed Project would primarily be associated with construction activities and be temporary and minimal in nature. The Proposed Project would result in a standard RSA for Runway 12/30 and would not induce any on-going activity at the Airport which could incrementally contribute to noise, traffic, or demand for public services or energy supplies. Areas which would be cleared of vegetation and graded are of limited value as habitat or wildlife corridors due to the proximity to the existing airfield infrastructure and activities. There are no physical alterations to the environment which would contribute the any cumulative impacts connected to other past, present, or probable future projects. The impact would be **less than significant**.

c) The Proposed Project would improve the Runway 12/30 RSA by clearing, cutting, filling, and grading the existing terrain to create an even grade free of obstacles around the runway in accordance with FAA standards. The Proposed Project would not introduce any elements which would pose hazards to humans. Neither would it induce any activity which could contribute to indirect negative effects on human populations. Rather, the Proposed Project would enhance the safety of aviation activity occurring on Runway 12/30 at the Airport. Thus, the impact would be **less than significant**.

**Environmental Checklist** 

This Page Intentionally Left Blank

# Appendix A **Air Quality and Climate Analysis**



# Draft

# RUNWAY 12/30 RUNWAY SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Air Quality and Climate Analysis

Prepared for Inyo County Department of Public Works

July 2023



# Draft

# RUNWAY 12/30 RUNWAY SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Air Quality and Climate Analysis

Prepared for Inyo County Department of Public Works

July 2023

2600 Capitol Avenue Suite 200 Sacramento, CA 95816 916.564.4500 esassoc.com

BendOrlandoSan JoseCamarilloPasadenaSanta MonicaDelray BeachPetalumaSarasotaDestinPortlandSeattleIrvineSacramentoTampa

Los Angeles San Diego
Oakland San Francisco

201800979.03



**OUR COMMITMENT TO SUSTAINABILITY** | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper.

# **TABLE OF CONTENTS**

# Air Quality and Climate Analysis

|              |                                 |                                                                                               | <u>Page</u>  |
|--------------|---------------------------------|-----------------------------------------------------------------------------------------------|--------------|
| 1.           | Intro                           | oduction and Overview                                                                         | 1            |
| 2.           | Reg<br>2.1<br>2.2<br>2.3<br>2.4 | State of California  Attainment Status  Existing Conditions                                   | 1<br>2<br>4  |
| 3.           | Air (3.1 3.2 3.3                | Quality  Methodology  Construction Emissions  Mitigation, Avoidance, or Minimization Measures | 7<br>8       |
| 4.           | Clin<br>4.1<br>4.2<br>4.3       | Methodology Construction Emissions Mitigation, Avoidance, or Minimization Measures            | 11<br>11     |
| List         | of Ta                           | bles                                                                                          |              |
| Tabl<br>Tabl | e 2-2<br>e 2-3<br>e 2-4         | CAAQS and NAAQS in the Great Basin Valleys - Air Basin                                        | 5<br>6       |
| Tabl<br>Tabl | e 3-1<br>e 3-2<br>e 3-3         | Estimated Construction Schedule                                                               | 8<br>9<br>10 |
| Tabl         | e 4-1                           | Annual Proposed Project Construction Greenhouse Gas Emissions                                 | 11           |

# RUNWAY 12/30 RUNWAY SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

# Air Quality and Climate Analysis

# 1. Introduction and Overview

This report provides an analysis and overview of the air quality and climate modeling data preparation and resulting construction emissions for the Runway 12/30 Runway Safety Area (RSA) Improvement Project at Bishop Airport (BIH). The Proposed Project would involve clearing and grading around Runway 12/20 in order to achieve a standard RSA. The Proposed Project is not anticipated to have ramifications for operations at BIH, as the RSA improvements would not induce any new activity or change any existing arrival or departure routes. This air quality and climate analysis was prepared as a part of the environmental review for the construction of improvements for the RSA for Runway 12/30.

A detailed discussion of the model inputs used to develop air quality and greenhouse gas (GHG) emissions calculations is included in the following sections.

# 2. Regulatory Setting

This section provides information pertaining to regulatory conditions in the project area, which includes the Great Basin Valleys - Air Basin. For example, this includes information on attainment/nonattainment designations, and applicable regulatory criteria and/or thresholds that will be applied to the results of the air quality assessment.

# 2.1 Federal

The United States Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS) for the following criteria pollutants: carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO<sub>2</sub>), ozone (O<sub>3</sub>) and its precursors such as oxides of nitrogen (NO<sub>x</sub>) and volatile organic compounds (VOCs), particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), and sulfur dioxide (SO<sub>2</sub>). In complying with the National Environmental Policy Act (NEPA), the Federal Aviation Administration (FAA) must determine if a Federal Action would cause criteria pollutant concentrations to exceed the NAAOS.

FAA will evaluate if the emissions caused by the Proposed Project would result in a significant impact under the FAA's NEPA threshold (see the *Runway 12/30 Runway Safety Area* 

*Improvement Project at Bishop Airport Environmental Assessment*). While there are four air quality plans in the Great Basin Unified Air Pollution Control District (GBUAPCD), none of them are applicable to the project area.

Exhibit 4-1 of the FAA's 1050.1F Desk Reference provides the FAA's significance thresholds for air quality:

"The action would cause pollutant concentrations to exceed one or more of the [NAAQS], as established by the [EPA] under the [CAA], for any of the time periods analyzed, or to increase the frequency or severity of any such existing violations."

# 2.2 State of California

The Clean Air Act (CAA) allows states to adopt air quality regulations and standards provided they are at least as stringent as the NAAQS. The California Air Resources Board (CARB) was tasked with establishing the California Ambient Air Quality Standards (CAAQS) via the California Clean Air Act of 1988 (CCAA). This motion established CAAQS for pollutants not covered in the NAAQS including sulfates, H<sub>2</sub>S, vinyl chloride, and visibility-reducing particles.

Like NAAQS, geographic areas that do not meet the CAAQS are called "nonattainment areas." The CARB is responsible for enforcing regulations to achieve and maintain the NAAQS and CAAQS. The CARB is responsible for reviewing operations and programs in local air districts and requires each air district with jurisdiction over a nonattainment area to develop a strategy for achieving the NAAQS and CAAQS. The local air district, in this case the GBUAPCD, is responsible for the development, implementation, and enforcement of rules and regulations designed to attain the NAAQS and CAAQS in the Great Basin Valleys – Air Basin (Air Basin).

The California Air Toxics Program is an established two-step process of risk identification and risk management to address potential health effects from exposure to toxic substances in the air. In the risk identification step, CARB and the Office of Environmental Health Hazard Assessment (OEHHA) determine if a substance should be formally identified, or "listed," as a toxic air contaminant (TAC) in California. In the risk management step, CARB reviews emission sources of an identified TAC to determine whether regulatory action is needed to reduce risk. Based on results of that review, CARB has promulgated a number of Airborne Toxic Control Measures (ATCMs), both for stationary and mobile sources, including On-Road and Off-Road Vehicle Rules. These ATCMs include measures such as limits on heavy-duty diesel motor vehicle idling and emission standards for off-road diesel construction equipment in order to reduce public exposure to diesel particulate matter (DPM) and other TACs. These actions are also supplemented by the Assembly Bill (AB) 2588 Air Toxics "Hot Spots" program and Senate Bill (SB) 1731, which require facilities to report their air toxics emissions, assess health risks, notify nearby residents and workers of significant risks if present, and reduce their risk through implementation of a risk management plan. The South Coast Air Quality Management District (SCAQMD) has further adopted two rules to limit cancer and non-cancer health risks from facilities located within its jurisdiction. Rule 1401 (New Source Review of Toxic Air

Contaminants) regulates new or modified facilities, and Rule 1402 (Control of Toxic Air Contaminants from Existing Sources) regulates facilities that are already operating. Rule 1402 incorporates requirements of the AB 2588 program, including implementation of risk reduction plans for significant risk facilities.

## 2.2.1 Great Basin Unified Air Pollution Control District

GBUAPCD is the air pollution control agency with jurisdiction over Alpine, Mono, and Inyo County. The Air Basin covers the whole GBUAPCD jurisdiction. The purpose of the GBUAPCD is to enforce federal, state, and local air quality regulations and to ensure that the federal and state air quality standards are met.

There are four air quality plans that are currently adopted by the GBUAPCD: Owens Valley PM<sub>10</sub> State Implementation Plan (SIP), Mono Basin PM<sub>10</sub> SIP, Coso Junction PM<sub>10</sub> SIP, and the Mammoth Lakes Air Quality Management Plan (AQMP). None of these air quality plans are applicable to the Proposed Project, as the Proposed Project would occur outside of each of the applicable planning areas.

For the purposes of California Environmental Quality Act (CEQA) analyses, GBUAPCD uses the Mojave Desert Air Quality Management District (MDAQMD) standards as their regional significance thresholds.

## 2.2.2 Greenhouse Gases

The climate change regulatory setting – international, federal, state, and local – is complex and rapidly evolving. The EPA is responsible for implementing federal policies to address GHGs. The federal government administers a wide array of public-private partnerships to reduce the quantity of GHGs generated in the United States. The EPA has published endangerment findings for greenhouse gases indicating that emissions of GHGs from new motor vehicles and certain aircraft contribute to air pollution that endangers the public health and welfare under the CAA, Section 202(a).

The Council on Environmental Quality (CEQ) affirmed that NEPA and its implementing regulations (40 CFR 1500 et. seq.) apply to GHGs and climate change. GHGs include carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), NO<sub>2</sub>, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF<sub>6</sub>) and nitrogen trifluoride (NF<sub>3</sub>). Despite this guidance, there are no significance thresholds associated with GHGs. CEQ instructs federal agencies to disclose a project's contribution to GHGs in a study area although the need to disclose such emissions for General Conformity purposes does not exist.

Several California statutes, policies and regulations have been promulgated to reduce the growth in GHG emissions. The FAA has not established a significance threshold for climate and GHG emissions, nor has the FAA identified specific factors to consider in making a significance determination for GHG emissions.

# 2.3 Attainment Status

The Airport is located in Inyo County, within the GBUAPCD. The NAAQS and CAAQS attainment status for the GBUAPCD is presented in **Table 2-1**.

TABLE 2-1
CAAQS AND NAAQS IN THE GREAT BASIN VALLEYS - AIR BASIN

| Criteria Air Pollutant               | NAAQS Attainment Status      | <b>CAAQS Attainment Status</b> |  |
|--------------------------------------|------------------------------|--------------------------------|--|
| Ozone (1-Hour)                       | Unclassified/Attainment      | Nonetteinment                  |  |
| Ozone (2015 8-Hour)                  | Unclassified/Attainment      | Nonattainment                  |  |
| CO (1-Hour and 8-Hour)               | Unclassified/Attainment      | Attainment                     |  |
| NO <sub>2</sub> (1-Hour)             | Unclassified/Attainment      | A 44 = i.e = 4                 |  |
| NO <sub>2</sub> (Annual)             | Unclassified/Attainment      | Attainment                     |  |
| SO <sub>2</sub> (1-Hour)             | Unclassified/Attainment      | A44-1                          |  |
| SO <sub>2</sub> (24-Hour and Annual) | Unclassified/Attainment      | Attainment                     |  |
| DM (24 Hour)                         | Unclassified/                | Nonattainment                  |  |
| PM <sub>10</sub> (24-Hour)           | Nonattainment (Owens Valley) | Nonattainment                  |  |
| PM <sub>2.5</sub> (2012 Annual)      | Unclassified/Attainment      | Attainment                     |  |
| PM <sub>2.5</sub> (2006 24-Hour)     | Unclassified/Attainment      | Attainment                     |  |
| Lead                                 | Unclassified/Attainment      | Attainment                     |  |
| SOURCE: EPA, 2022. CARB, 2020.       |                              |                                |  |

# 2.4 Existing Conditions

GBUAPCD monitors air quality at 14 locations throughout Inyo County. The closest air quality monitoring station is located at the White Mountain Research Center on East Line St., about 1.2 miles southeast of the Airport. The White Mountain Research Center monitors concentrations of ozone, CO, SO<sub>2</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>. There are no monitoring stations that measure concentrations of NO<sub>2</sub> near the Airport. **Table 2-2** summarizes air quality data from the White Mountain Research Station for the most recent three years.

The climate of the GSA and Air Basin is determined by its terrain and geographical location. The Basin is situated in a valley with the Sierra Nevada Mountains to the west and the White-Inyo Mountains to the east. The Sierra Nevada Mountains to the west act as a barrier to precipitation creating a 'rain shadow' in the basin. For this reason, the region has an arid climate with an average annual rainfall of about five inches. The temperature typically varies between 22°F to 97°F throughout the year with the hottest months in June through August. The average wind speed ranges from around five miles per hour (mph) in the fall to seven mph in the spring.

TABLE 2-2
AIR QUALITY MONITORING DATA SUMMARY (2020-2022)

| Pollutort                                             | Monite | Monitoring Data by Yea |       |  |  |
|-------------------------------------------------------|--------|------------------------|-------|--|--|
| Pollutant                                             | 2020   | 2021                   | 2022  |  |  |
| Ozone (O <sub>3</sub> )                               |        |                        |       |  |  |
| Highest 1 Hour Average (ppm)                          | 0.079  | 0.081                  | 0.075 |  |  |
| Days over National Standard                           | 0      | 0                      | 0     |  |  |
| Highest 8 Hour Average (ppm)                          | 0.073  | 0.075                  | 0.068 |  |  |
| Days over National Standard (0.070 ppm)               | 1      | 4                      | 0     |  |  |
| Sulfur Dioxide (SO <sub>2</sub> )                     |        |                        |       |  |  |
| Highest 1 Hour Average (ppb)                          | 0.9    | 0.6                    | 0.6   |  |  |
| Days over National Standard (75 ppb)                  | 0      | 0                      | 0     |  |  |
| Highest 24 Hour Average (ppb)                         | 0.3    | 0.3                    | 0.4   |  |  |
| Days over National Standard (140 ppb)                 | 0      | 0                      | 0     |  |  |
| Carbon Monoxide (CO)                                  |        |                        |       |  |  |
| Highest 1 Hour Average (ppm)                          | 2.2    | 0.9                    | 0.3   |  |  |
| Days over Federal Standard (35 ppm)                   | 0      | 0                      | 0     |  |  |
| Highest 8 Hour Average (ppm)                          | 1.7    | 8.0                    | 0.3   |  |  |
| Days over National Standard (9.0 ppm)                 | 0      | 0                      | 0     |  |  |
| Particulate Matter ≤ 10 Microns (PM <sub>10</sub> )   |        |                        |       |  |  |
| Highest 24 Hour Average (μg/m³) <sup>a</sup>          | 788    | 151                    | 478   |  |  |
| Estimated Days over National Standard (150 µg/m³)     | 10     | 0                      | 3     |  |  |
| Particulate Matter ≤ 2.5 Microns (PM <sub>2.5</sub> ) |        |                        |       |  |  |
| Highest 24 Hour Average (μg/m³) <sup>a</sup>          | 196.9  | 89.7                   | 42.2  |  |  |
| Estimated Days over National Standard (35 µg/m³)      |        |                        | _     |  |  |

NOTES:

ppm = parts per million

ppb = parts per billion

μg/m³ = micrograms per cubic matter

SOURCES: EPA. Outdoor Air Quality Data; Monitor Values Report. 2023.

# 2.4.1 Existing Inventory

The sources of air emissions associated with the Airport are typical of a small commercial service facility used mainly by general aviation aircraft. Emission sources include aircraft during the landing/take-off cycle and airport-related motor vehicles (e.g., passenger vehicles, heavy trucks, shuttles). The Airport does not include any stationary sources such as diesel-powered generators. Emissions from aircraft auxiliary power unit (APU) and ground support equipment (GSE) were modeled for commercial service jet aircraft using FAA's Aviation Environmental Design Tool (AEDT) default GSE assignments. The bulk of air pollutants emissions generated from the Airport are produced by aircraft operations and off-airport vehicular travel.

<sup>--</sup> There was insufficient data available to determine the value

<sup>&</sup>lt;sup>a</sup> exceptional events excluded

The existing condition (2022) air pollutant emissions inventory for the Airport is presented in **Table 2-3**. The existing conditions air pollutant emissions inventory was developed using the most recent version of FAA's AEDT 3e<sup>1</sup> and the EMFAC2021 web database for motor vehicles.

Table 2-3
Existing Conditions Air Pollutant Emissions Inventory (Annual Tons)

| Source                       | со    | voc  | NO <sub>x</sub> | so <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
|------------------------------|-------|------|-----------------|-----------------|------------------|-------------------|
| Aircraft                     | 92.13 | 5.17 | 5.52            | 0.96            | 0.17             | 0.17              |
| GSE                          | 5.36  | 0.19 | 0.45            | 0.00            | 0.02             | 0.02              |
| Off-Airport Vehicular Travel | 1.34  | 0.19 | 2.12            | 0.01            | 0.56             | 0.17              |
| Total                        | 98.83 | 5.55 | 8.09            | 0.97            | 0.75             | 0.36              |

NOTES:

CO = carbon monoxide

NO<sub>x</sub> = oxides of nitrogen

 $PM_{10}$  = particulate matter less than or equal to 10 microns in diameter

PM<sub>2.5</sub> = particulate matter less than or equal to 2.5 microns in diameter

 $SO_X$  = oxides of sulfur

VOC = volatile organic compound

Aircraft emissions inventory includes emissions from APU

SOURCE: Environmental Science Associates, 2023.

Similar to the existing calculations conducted for the criteria pollutants, existing GHG emissions were calculated for aircraft operations and off-airport vehicular travel. **Table 2-4** shows GHG emissions at the Airport for 2022. Using AEDT 3e, the amount of CO<sub>2</sub> was calculated for aircraft operations. CH<sub>4</sub> and nitrous oxide (N<sub>2</sub>O) for aircraft were calculated using the methods found in the FAA *Aviation Emissions and Air Quality Handbook* (Version 3, Update 1). Emissions of GHGs from mobile sources, such as light-duty vehicles associated with passenger traffic and larger trucks, were calculated using the EMFAC2021 web database.

Table 2-4
Existing Conditions (2022) Greenhouse Gas Emissions
(Annual Metric Tons)

| Source                       | Carbon Dioxide Equivalent (CO₂e) (metric tons) |
|------------------------------|------------------------------------------------|
| Aircraft*                    | 6,603.64                                       |
| Off-Airport Vehicular Travel | 1,411.92                                       |
| 2022 To                      | tal 8,015.56                                   |

6

<sup>&</sup>lt;sup>1</sup> The AEDT model replaced FAA's legacy modeling tools for emissions (the Emissions and Dispersion Modeling System (EDMS)) and noise (the Integrated Noise Model (INM)).

# 3. Air Quality

# 3.1 Methodology

# 3.1.1 Construction

The Project's construction emissions were estimated using the California Emissions Estimator Model (CalEEMod) (Version 2020.4.0) software, which is a statewide land use emissions computer model designed to quantify potential criteria pollutant emissions associated with construction and operations from a variety of land use projects. The model was developed for the California Air Pollution Control Officers Association in collaboration with the California air districts. CalEEMod is based on outputs from CARB OFFROAD model and the CARB on-road vehicle emissions factor (EMFAC) model, which are emissions estimation models developed by CARB and used to calculate emissions from construction and operational activities, heavy-duty off-road equipment, and on-road vehicles. Emissions from on-road vehicles were estimated outside of CalEEMod using EMFAC2021 emission factors for haul and material vendor trucks and worker vehicles.

Construction activities associated with the Proposed Project would generate temporary and short-term emissions of criteria pollutants. Construction related emissions are expected from site preparation, grading, and skimming activities. During the site preparation phase approximately 11,276 cy of soil would be exported. During the grading phase approximately 50,000 cy of soil would be exported. Proposed Project construction is expected to commence in late 2023 and would last approximately 3 months. Construction duration by phase is provided in **Table 3-1**. If project construction commences later than the anticipated start date, air quality impacts would be less than those analyzed herein, because a more energy-efficient and cleaner burning construction equipment fleet mix would be expected in the future, pursuant to state regulations that require construction equipment fleet operators to phase-in less polluting heavy-duty equipment. Therefore, air quality impacts would generally be less than those analyzed herein due to the likelihood of less emissions generated.

The specific construction fleet may vary due to specific needs at the time of construction. The duration of construction activity and associated construction equipment was estimated based on consultation with Inyo County Public Works and CalEEMod default assumptions.

The maximum daily regional emissions from these activities are estimated by construction phase. Maximum annual criteria pollutant emissions are shown in **Table 3-2**.

TABLE 3-1
ESTIMATED CONSTRUCTION SCHEDULE

| Activity           | Start Date | End Date   | Duration<br>(Workdays) |
|--------------------|------------|------------|------------------------|
| Site Preparation   | 12/1/2023  | 12/30/2023 | 30                     |
| Grading/Excavation | 12/1/2023  | 3/1/2024   | 91                     |
| Skimming           | 12/1/2023  | 12/15/2023 | 15                     |

SOURCE: Environmental Science Associates, 2023, in consultation with Inyo County Public Works.

The maximum daily regional emissions from these activities were then compared to the MDAQMD significance thresholds.

# 3.1.2 Operations

The Proposed Project would construct improvements to the RSA for Runway 12/30 but would not have ramifications for operations at BIH. The RSA improvements would not induce any new on-going activities or alter any existing approach or departure routes at BIH. Therefore, there would be no new emissions of criteria pollutants associated with the Proposed Project.

# 3.2 Construction Emissions

Maximum daily and annual criteria pollutant emissions are shown in **Table 3-2**. Project construction would not exceed any annual criteria pollutant thresholds established by the MDAQMD. However, Project construction emissions would exceed NO<sub>X</sub> pollutant daily thresholds established by the MDAQMD. Therefore, impacts would be considered potentially significant.

TABLE 3-2
MAXIMUM REGIONAL CONSTRUCTION EMISSIONS – WITHOUT MITIGATION

|                                  | Emissions (pounds per day) |                 |              |                 |                  |                   |
|----------------------------------|----------------------------|-----------------|--------------|-----------------|------------------|-------------------|
|                                  | voc                        | NO <sub>x</sub> | со           | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases              |                            |                 |              |                 |                  |                   |
| Site Preparation                 | 5.44                       | 52.27           | 43.04        | 0.13            | 2.99             | 1.64              |
| Grading                          | 12.46                      | 131.34          | 125.40       | 0.28            | 9.02             | 4.92              |
| Skimming                         | 1.93                       | 17.03           | 11.34        | 0.04            | 1.18             | 0.63              |
| Maximum Daily Regional Emissions | 19.82                      | 200.64          | 179.77       | 0.45            | 13.20            | 7.18              |
| MDAQMD Regional Threshold        | 137.0                      | 137.0           | 548.0        | 137.0           | 82.0             | 65.0              |
| Threshold Exceeded?              | No                         | Yes             | No           | No              | No               | No                |
|                                  |                            | E               | missions (to | ons per yea     | r)               |                   |
|                                  | voc                        | NO <sub>x</sub> | со           | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases              |                            |                 |              |                 |                  |                   |
| Site Preparation                 | 0.07                       | 0.69            | 0.55         | <0.01           | 0.04             | 0.02              |
| Grading                          | 0.42                       | 3.94            | 3.53         | 0.01            | 0.39             | 0.22              |

NOTES: Totals may not add up exactly due to rounding. SOURCE: Environmental Science Associates, 2023.

Maximum Annual Regional Emissions

MDAQMD Regional Threshold

Threshold Exceeded?

Skimming

# 3.3 Mitigation, Avoidance, or Minimization Measures

0.01

0.51

25.0

No

0.13

4.76

25.0

No

0.09

4.17

100.0

No

< 0.01

0.01

25.0

No

0.01

0.44

15.0

< 0.01

0.24

12.0

No

With implementation of **Mitigation Measure MM-AIR-1**, as described below, the regional daily  $NO_X$  emissions would be reduced to a level below the MDAQMD regional threshold as shown in **Table 3-3**.

#### **Mitigation Measure**

MM-AIR-1: Equipment Emission Standards. The construction contractor shall utilize off-road diesel-powered construction equipment that meet or exceed the CARB and EPA Tier 4 Interim off-road emissions standards for all equipment rated at 50 horsepower (hp) or greater and EPA Tier 4 Final off-road emissions standards for all equipment rated at 400 hp or greater during Project construction. Such equipment shall be outfitted with Best Available Control Technology (BACT) devices including a CARB-certified Level 3 Diesel Particulate Filter or equivalent. A copy of each unit's certified tier specification or model year specification and CARB or GBUAPCD operating permit (if applicable) shall be available upon request at the time of mobilization of each applicable unit of equipment.

The calculations in Table 3-3 incorporate compliance with dust control measures required to be implemented during each phase of construction by GBUAPCD Rule 401 (Fugitive Dust) where watering is assumed to occur three times per day.

Table 3-3
Maximum Regional Construction Emissions – With Mitigation

|                                  | Emissions (pounds per day) |                           |        |                 |                  |                   |
|----------------------------------|----------------------------|---------------------------|--------|-----------------|------------------|-------------------|
|                                  | voc                        | NO <sub>x</sub>           | со     | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases              |                            |                           |        |                 |                  |                   |
| Site Preparation                 | 2.38                       | 25.76                     | 63.86  | 0.13            | 1.68             | 0.44              |
| Grading                          | 6.74                       | 91.35                     | 151.27 | 0.28            | 6.08             | 2.22              |
| Skimming                         | 0.69                       | 5.47                      | 20.26  | 0.04            | 0.69             | 0.18              |
| Maximum Daily Regional Emissions | 9.81                       | 122.58                    | 235.38 | 0.45            | 8.45             | 2.84              |
| MDAQMD Regional Threshold        | 137.0                      | 137.0                     | 548.0  | 137.0           | 82.0             | 65.0              |
| Threshold Exceeded?              | No                         | No                        | No     | No              | No               | No                |
|                                  |                            | Emissions (tons per year) |        |                 |                  |                   |

|                                   |      |                 | •     |                 | <u> </u>         |                   |
|-----------------------------------|------|-----------------|-------|-----------------|------------------|-------------------|
|                                   | voc  | NO <sub>x</sub> | со    | SO <sub>x</sub> | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Construction Phases               |      |                 |       |                 |                  |                   |
| Site Preparation                  | 0.03 | 0.29            | 0.86  | <0.01           | 0.02             | 0.01              |
| Grading                           | 0.16 | 2.13            | 4.71  | 0.01            | 0.26             | 0.09              |
| Skimming                          | 0.01 | 0.04            | 0.15  | <0.01           | 0.01             | <0.01             |
| Maximum Annual Regional Emissions | 0.19 | 2.45            | 5.72  | 0.01            | 0.28             | 0.10              |
| MDAQMD Regional Threshold         | 25.0 | 25.0            | 100.0 | 25.0            | 15.0             | 12.0              |
| Threshold Exceeded?               | No   | No              | No    | No              | No               | No                |

NOTES: Totals may not add up exactly due to rounding. SOURCE: Environmental Science Associates, 2023.

# 4. Climate

This GHG assessment includes direct and indirect emissions inventories for construction activities including heavy-duty off-road equipment, and on-road vehicles. A GHG inventory was prepared for construction activities associated with the Proposed Project in year 2023. The analysis of GHG emissions generally follows the same methodology and modeling tools as the air quality criteria pollutant emissions analysis as discussed in Section 3.2.

In terms of analyzing GHG emissions from the Proposed Project, the analysis includes the area within the Airport's geographical boundary which is defined as the geographic boundary of the Airport plus the airspace around the Airport, as well as the roads and public transit routes that bring employees and suppliers to and from the Airport. The GHG inventory clearly distinguishes the Proposed Project's GHG emissions from other relevant indirect sources affiliated with airport operations.

GHGs include CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs, and SF<sub>6</sub>. Increasing concentrations of GHGs in the atmosphere affect global climate. Anthropogenic (i.e., man-made) sources of GHG emissions are primarily associated with the combustion of fossil fuels.

Mass emissions of GHGs are accounted for by converting emissions of specific pollutants to CO<sub>2</sub>e emissions by applying the proper global warming potential (GWP) value for each specific pollutant. GWP represents the amount of heat captured by a mass of a specific GHG compared to a similar mass of CO<sub>2</sub>. These GWP ratios are provided by the Intergovernmental Panel on Climate Change (IPCC) in its Fifth Assessment Report (AR5).<sup>2</sup> By applying the GWP ratios, project-related CO<sub>2</sub>e emissions can be tabulated in metric tons per year. Typically, the GWP ratio corresponding to the warming potential of CO<sub>2</sub> over a 100-year period is used as a baseline.

# 4.1 Methodology

# 4.1.1 Construction

Construction activities associated with the Proposed Project would result in emissions of CO<sub>2</sub> and, to a lesser extent, CH<sub>4</sub> and N<sub>2</sub>O. Construction-period GHG emissions were estimated with the same CalEEMod emissions software and EMFAC2021 emission factors based on the same construction schedule and activities as described above in Section 3.2 above.

# 4.1.2 Operations

The Proposed Project would not induce any new operations or alter any existing operations at BIH. No GHG emissions attributable to the Proposed Project would occur beyond the construction phases.

# 4.2 Construction Emissions

The Proposed Project's construction GHG emissions are shown in **Table 4-1**.

Table 4-1
Annual Proposed Project Construction Greenhouse Gas Emissions

| Emissions Sources  |                             | CO₂e (Metric Tons per Year)a |
|--------------------|-----------------------------|------------------------------|
| Off-Road Equipment |                             | 860                          |
| On-Road Sources    |                             | 95                           |
| Water and Office   |                             | 112                          |
|                    | Project Total GHG Emissions | 1,067                        |

11

<sup>&</sup>lt;sup>2</sup> IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, p.87.

# 4.3 Mitigation, Avoidance, or Minimization Measures

As the FAA has not established a significance threshold for climate and GHG emissions, the Proposed Project does not exceed a significance threshold for GHG emissions. Therefore, no mitigation measures are required.

# Appendix B Biological Resources Technical Report



#### Draft

# RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Biological Resources Technical Report

Prepared for Inyo County Public Works October 2024





#### Draft

# RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Biological Resources Technical Report

Prepared for Inyo County Public Works October 2024

2600 Capitol Avenue Suite 200 Sacramento, CA 95816 916.564.4500 esassoc.com

Atlanta Orlando San Diego San Francisco Bend Palm Beach County Camarillo Pasadena San Jose Pensacola Irvine Sarasota Los Angeles Petaluma Seattle Mobile Portland Tampa

Oakland Sacramento

D202000450.01



**OUR COMMITMENT TO SUSTAINABILITY** | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper.

# **TABLE OF CONTENTS**

# Runway 12/30 Safety Area Improvement Project at Bishop Airport - Biological Resources Technical Report

|            |                                                           | <u>Page</u> |
|------------|-----------------------------------------------------------|-------------|
| Chapter 1  |                                                           | 1-1         |
| Introducti | on                                                        | 1-1         |
| 1.1        | Introduction                                              | 1-1         |
| 1.2        | Proposed Project                                          | 1-1         |
| 1.3        | Project Location                                          |             |
| 1.4        | Identification of Survey Area                             |             |
| Chapter 2  |                                                           | 2-5         |
| Methods.   |                                                           | 2-5         |
| 2.1        | Review of Background Information                          | 2-5         |
| 2.2        | Survey Dates and Surveying Personnel                      | 2-5         |
| 2.3        | Regulatory Context                                        |             |
| Chapter 3  |                                                           | 3-1         |
| Environm   | ental Setting                                             | 3-1         |
| 3.1        | Hydrology                                                 | 3-1         |
| 3.2        | Vegetation Communities and Wildlife Habitats              | 3-1         |
|            | 3.2.1 Upland Habitat                                      | 3-3         |
|            | 3.2.2 Wetland Habitat                                     | 3-3         |
| 3.3        | Soils                                                     |             |
| 3.4        | Special-Status Species                                    |             |
|            | 3.4.1 Special-Status Plants                               |             |
|            | 3.4.2 Special-Status Wildlife Species                     |             |
| 3.5        | Migratory Bird Treaty Act Bird Species in the Survey Area |             |
| 3.6        | Wildlife Movement Corridors                               |             |
| 3.7        | Critical Habitat for Listed Fish and Wildlife Species     |             |
| 3.8        | Heritage and Protected Trees                              |             |
| 3.9        | Wetlands, Waters, and Riparian Habitat                    | 3-16        |
| Chapter 4  |                                                           | 4-1         |
| Conclusio  | ons                                                       | 4-1         |
| Chapter 5  |                                                           | 5-1         |
| Reference  | ac                                                        | 5-1         |

#### **Page Appendices** A. Special-Status Species with Potential to Occur within the Survey Area B. USFWS IPaC Report **List of Figures** Regional Location ......1-3 Figure 1 Figure 2 Vicinity Map ......1-4 Natural Communities and Land Cover Types ......3-4 Figure 3 Figure 4 Figure 5-1 CNDDB Wildlife Occurrences within 5 Miles of the Survey Area ......3-9 Figure 5-2 CNDDB Plant Occurrences within 5 Miles of the Survey Area ......3-10 **List of Tables** Table 1 Natural Communities and Habitat Types within the Survey Area.....3-2 Table 2

This page intentionally left blank

# **CHAPTER 1**

# Introduction

#### 1.1 Introduction

This report presents an evaluation of the special-status wildlife, plants, and other sensitive biological resources that potentially occur within the Runway 12/30 Safety Area Improvement Project (Proposed Project) at Bishop Airport Survey Area (Survey Area). The evaluation is based on background data review of biological resources in the Survey Area and vicinity as well as reconnaissance surveys conducted by ESA in November 2022, May 2020, and June 2019. The intent and scope of this document are to characterize these biological resources in the Survey Area and propose measures to protect sensitive biological resources during construction of Runway Safety Area (RSA) improvements.

# 1.2 Proposed Project

Bishop Airport (BIH) is a public-use airport located in Inyo County (County) in the Eastern Sierra region of California, as depicted in **Figure 1**. The Airport is owned and operated by Inyo County and is situated on land leased from the Los Angeles Department of Water and Power (LADWP). BIH is designated in the Federal Aviation Administration's (FAA's) National Plan of Integrated Airport Systems as a local, general aviation airport. The Airport currently serves general aviation activity and limited military activity, as well as charter and air cargo operations. Inyo County seeks to bring the RSA off both the Runway 12 and 30 ends at Bishop Airport into compliance with FAA requirements. The Proposed Project is subject to discretionary approval on the part of the County and is thus subject to the California Environmental Quality Act (CEQA).

# 1.3 Project Location

The Proposed Project location is approximately 2 miles east of the town of Bishop, California in Inyo County on the property of the Bishop Airport. The survey area is bordered by North Fork Bishop Creek to the north, Owens River to the east, Line Street to the south, and CA route 395 to the west (**Figure 2**). The survey location is on the Bishop, Poleta Canyon, Laws, and Fish Slough quadrangles 7.5-Minute series. The elevation of the survey location ranges from 4,080 feet to 4,130 feet above sea level.

Bishop Airport is located in unincorporated Inyo County, approximately 1.5 miles east of the City of Bishop and approximately 45 miles southeast of the town of Mammoth Lakes. The Airport has three runways: Runway 12/30, Runway 17/35, and Runway 8/26. Runway 8/26 is planned for eventual closure, with conversion of the Runway 8 end to a taxiway and the Runway 26 end to

helicopter parking. Runway 12/30, the Airport's primary runway, is the only runway that accommodates commercial service.

# 1.4 Identification of Survey Area

A Survey Area was delineated to evaluate potential impacts to biological resources that could result from the implementation of the Proposed Project. The survey includes all areas to be directly affected by the Proposed Project as well as indirect impacts that could affect surrounding habitats.

The survey area includes a 500-foot buffer surrounding Runway 12/30, including the designated Runway Safety Area (RSA) that extends 800-feet beyond Runway 12/30 in both directions, to determine the presence of nesting birds (CDFW, 2013). In addition, the existing RSA unpaved access roads were also included within the survey area. The Survey Area is depicted on Figure 2.

The Proposed Project survey area encompasses approximately 403 acres. The survey area includes the area of the proposed runway expansion along with a 100-foot buffer to account for moving wildlife and hydrological resources. The survey area has an average annual precipitation of 4.84 inches. Temperatures range from an average annual maximum temperature of 99.7°F to an average annual minimum temperature of 54.5°F.

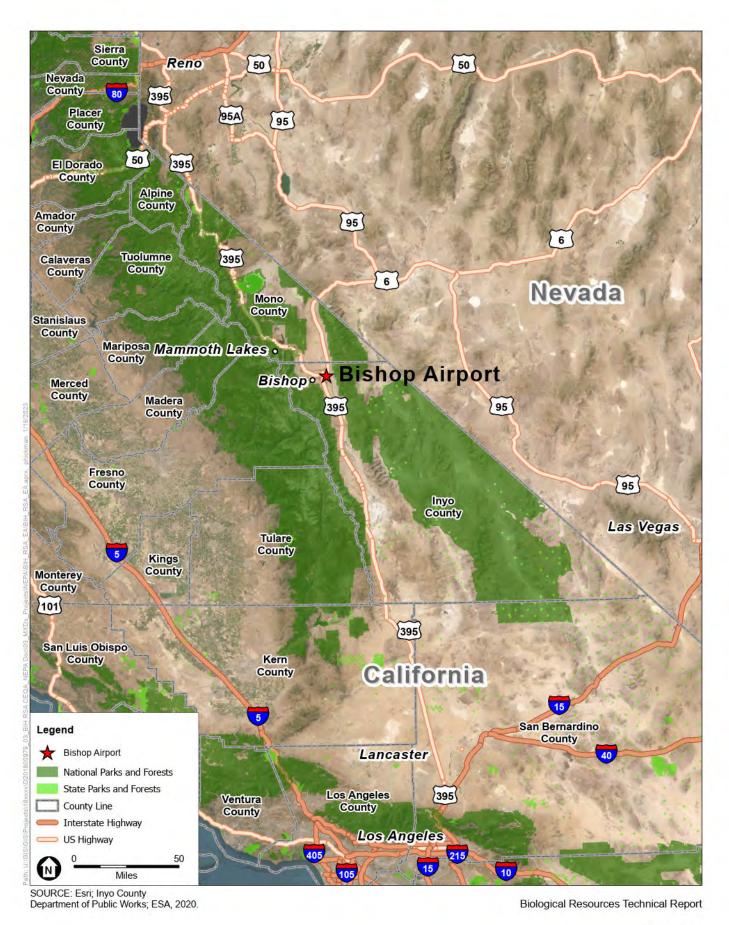



Figure 1
Bishop Airport Location

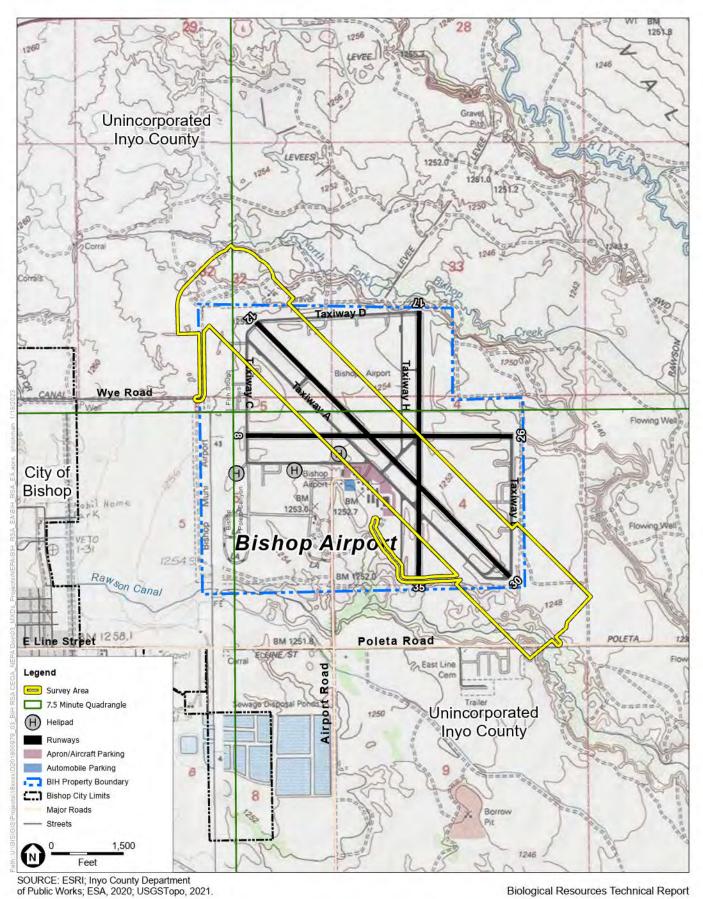



Figure 2
Bishop Airport Vicinity Map

# **CHAPTER 2**

# Methods

# 2.1 Review of Background Information

Prior to performing reconnaissance biological surveys, ESA reviewed publicly available data, subscription-based biological resource data, and survey area-specific information. Data sources that assisted in this analysis include:

- Topographic maps (USGS 2022a)
- Historic and current aerial imagery (Google, Inc. 2022)
- The CDFW California Natural Diversity Database (CNDDB) (CDFW 2022a-d)
- The National Wetlands Inventory (NWI) (USFWS 2022a)
- National Hydrography Dataset (NHD), (USGS 2022b)
- The California Native Plant Society (CNPS) Rare Plant Inventory online database (CNPS 2022a)
- Soil maps from the Natural Resources Conservation Service (NRCS) (NRCS 2022)
- iNaturalist (iNaturalist 2022)
- Information for Planning and Consultation (IPaC) (USFWS 2022b)

# 2.2 Survey Dates and Surveying Personnel

Biological reconnaissance surveys of the survey area were conducted by ESA Biologists Anna Schwyter and Natalie Lamas on November 1, 2022. Surveys were conducted to observe and characterize vegetation communities in the survey area and to assess habitat quality and potential for common and special-status wildlife species to occur within the survey area or the vicinity. Surveys were also conducted by ESA biologists in June 2019 and May 2020 to assess biological resources and potential for use by the southwestern willow flycatcher (*Empidonax traillii extimus*, SWFL), including habitat that might be impacted by aircraft operations.

# 2.3 Regulatory Context

Biological resources in the survey area may fall under the jurisdiction of various regulatory agencies and be subject to their regulations. In general, the greatest legal protections are provided for plant and wildlife species that are formally listed by the federal or state government under their respective Endangered Species Acts. The following regulations and agencies are commonly associated with projects that have the potential to affect biological resources:

- Federal Endangered Species Act
- Migratory Bird Treaty Act (MBTA)

- Bald and Golden Eagle Protection Act
- Clean Water Act, Section 404
- California Endangered Species Act
- Fish and Game Code Section 3503, 3503.5, and 3511
- Native Plant Protection Act
- Lake or Streambed Alteration Program
- Porter Cologne Water Quality Act
- CEQA Guidelines Section 15380

# **CHAPTER 3**

# **Environmental Setting**

This chapter provides the environmental baseline for soils, vegetation communities and habitats, and special-status plant and wildlife species in the survey area.

# 3.1 Hydrology

An Aquatic Resources Delineation report has been prepared for the Proposed Project and all relevant aspects of the survey area are addressed in that report.

# 3.2 Vegetation Communities and Wildlife Habitats

Wildlife habitats and vegetation communities within the survey area could provide potential habitat for special status species and are described in **Table 1** and below. Wildlife habitats were mapped for the survey area as shown in **Figure 3**.

TABLE 1
NATURAL COMMUNITIES AND HABITAT TYPES WITHIN THE SURVEY AREA

|                                                 | A           | Acreage <sup>a</sup>             |  |
|-------------------------------------------------|-------------|----------------------------------|--|
| Vegetation Community/Habitat Type               | Survey Area | Overlap with<br>Project Elements |  |
| Open Water, Riparian, and Wetlands <sup>b</sup> |             |                                  |  |
| Sandbar Willow Thicket                          | 9.69        | 0.00                             |  |
| Fremont Cottonwood-Willow Riparian Forest       | 2.54        | 0.44                             |  |
| End Cut, Fill, and Grading                      |             | 0.11                             |  |
| New Fenceline <sup>c</sup>                      |             | 0.02                             |  |
| New Patrol Road <sup>d</sup>                    |             | 0.31                             |  |
| Willow Riparian Woodland                        | 2.73        | 0.00                             |  |
| Saltgrass Meadow                                | 4.6         | 0.13                             |  |
| New Patrol Road <sup>d</sup>                    |             | 0.13                             |  |
| Uplands                                         | ·           |                                  |  |
| Rubber rabbitbrush scrub                        | 35.93       | 8.10                             |  |
| Borrow Area                                     |             | 4.76                             |  |
| End Cut, Fill, and Grading                      |             | 1.41                             |  |
| New Fenceline <sup>c</sup>                      |             | 0.25                             |  |
| New Patrol Road <sup>d</sup>                    |             | 0.01                             |  |
| RSA Sides                                       |             | 1.67                             |  |
| Developed/Disturbed Land Cover Types            | ·           |                                  |  |
| Disturbed/Developed                             | 347.68      | 108.87                           |  |
| Borrow Area                                     |             | 0.63                             |  |
| Cut, Fill, and Grading                          |             | 10.30                            |  |
| New Fenceline <sup>c</sup>                      |             | 0.66                             |  |
| New Patrol Road <sup>d</sup>                    |             | 0.51                             |  |
| RSA Sides                                       |             | 96.78                            |  |

#### NOTE:

SOURCE: CNPS 2022, ESA 2022

<sup>&</sup>lt;sup>a</sup> Acreages may not precisely total due to rounding.

b U.S. Fish and Wildlife Service definition of wetland

<sup>&</sup>lt;sup>C</sup> Assumes 5-foot corridor

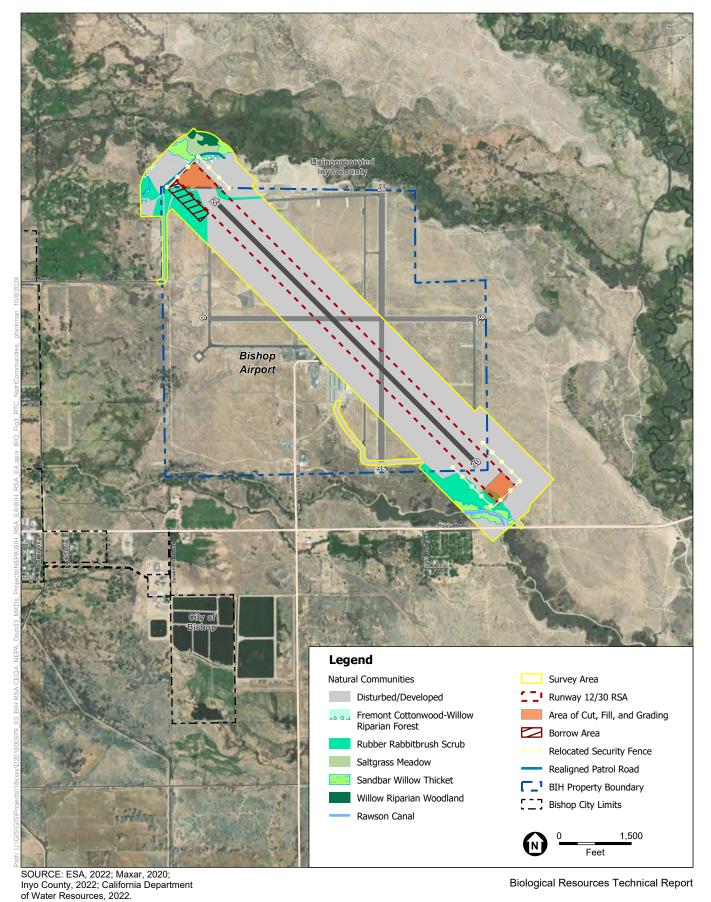
<sup>&</sup>lt;sup>d</sup> Assumes 25-foot corridor

## 3.2.1 Upland Habitat

The survey area primarily consists of upland habitat. This includes areas with a mixture of low-intensity development, open space, and shrub/scrub habitat. The open areas surrounding the runway are routinely graded and maintained by the Airport Operations staff, which requires low-growing vegetation. The area to the northwest of the survey area was previously used for gravel mining, and is largely abandoned, except for occasional off-highway vehicle use. The LADWP regularly patrol this area to ensure that there are no illegal dumping activities that could compromise the integrity of local water resources. The shrub/scrub habitat consists of primarily low-growing ruderal grassland and common shrub species. The upland vegetation communities within the survey area are described below.

#### **Disturbed/Developed**

Airport infrastructure (buildings, runways, taxiways, etc.), gravel and paved roads, and actively managed areas are bare or have sparse vegetation. Within the maintained object-free areas adjacent to the runways, low-growing angle-stemmed buckwheat (*Eriogonum maculatum*), cryptantha (*Cryptanthum micrantha*), and short-podded mustard (*Hirschfeldia incana*) are present.


#### Rubber rabbitbrush scrub (Ericameria nauseosa Alliance)

Airport property and surrounding areas outside of the actively maintained runway and taxiway object free areas consist of rubber rabbitbrush (*Ericameria nauseosa*) as the primary shrub species, with interspersed greasewood (*Sarcobatus vermiculatus*), and saltbush (*Atriplex* spp.). Herbaceous cover is generally sparse, and includes buckwheat, cruptantha, and short-podded mustard.

#### 3.2.2 Wetland Habitat

Wetland habitats at the far north and south ends of the survey area were identified through research using the U.S. Fish and Wildlife Service (USFWS) NWI database and field surveys conducted on November 1, 2022. Rawson Canal is a perennial stream located on the southeastern end of Runway 30 and could be potential habitat for wetland and stream species. Rawson Canal is located within the Crowley Lake Watershed and empties into the Owens River.

The USFWS NWI identifies the presence of freshwater forested/shrub riparian habitat slightly within and immediately surrounding the survey area. Field surveys confirm that these areas consist of perennial herbaceous vegetation, shrubby willow trees (*salix* sp.), and rose (*Rosa* sp.) bushes at the northern end of Runway 12. In addition, small areas of willow shrubs and rose thicket are located to the south along Rawson Canal. The wetland vegetation communities within the survey area are described below.



**ESA** 

Figure 3
Natural Communities and Land Cover Types

#### Sandbar willow thicket (Salix exigua Alliance)

Dense thickets of sandbar willow (*Salix exigua*) are present within the northwestern and southeastern ends of the survey area. Stands are almost uniformly comprised of sandbar willow, with interspersed Wood's rose (*Rose woodsii*). Due to high density of sandbar willow, very little herbaceous cover is present. Breaks in this community contain small patches of cattail (*Typha* sp.). Along Rawson Canal, small clusters of common reed (*Phragmites australis*) are also present within this community.

# Fremont cottonwood-willow riparian forest (*Populus fremontii-Salix gooddingii-S. lasiolepis S laevigata* Alliance)

Patches of Fremont cottonwood (*Populus fremontii*) are scattered along the north edge of the survey area, primarily near the transition from upland to riparian areas. Cooccurring species include black willow (*Salix gooddingii*), arroyo willow (*Salix lasiolepis*), and red willow (*Salix laevigata*). The herbaceous cover associated with this community is variable and includes stands of perennial pepperweed (*Lepidium latifolium*), saltgrass (*Distichlis spicata*), and reeds (*Juncus* sp.).

# Willow riparian woodland (Salix gooddingii-S. lasiolepis Salix laevigata Alliance)

Small areas of willow riparian woodland are present in the northern portion of the survey area, at its closest proximity to North Fork Bishop Creek. Black willow, red willow, and arroyo willow are dominant or co-dominant in this vegetation alliance. Areas of sandbar willow and Wood's rose occur in the shrub layer, with an herbaceous layer including Indian hemp dogbane (*Apocynum cannabium*), saltgrass, and reeds. This vegetation alliance is considered a sensitive natural community with an S3 ranking.

# Saltgrass meadow (Distichlis spicata Alliance)

An open saltgrass meadow is located in the survey area northwest of Runway 12. Additional component species of this community include common spike rush (*Eleocharis macrostachya*), scratchgrass (*Muhlenbergia asperifolia*), and reeds. The driest portion of this meadow includes small areas of rabbitbrush, while the wettest include cattail and alkali bulrush (*Bolboschoenus maritimus*) (Sawyer et al. 2009).

#### 3.3 Soils

The NRCS is a branch of the U.S. Department of Agriculture whose National Cooperative Soil Survey program produces soil data and provides information to the public. NRCS has soil maps and data for approximately 95 percent of the nation's counties, including Inyo County. Their reference materials include soil surveys, maps, reports and inventories, scientific and research reports and data, forestry, range, and wildlife inventories and studies, and official soil series and soil interpretations.

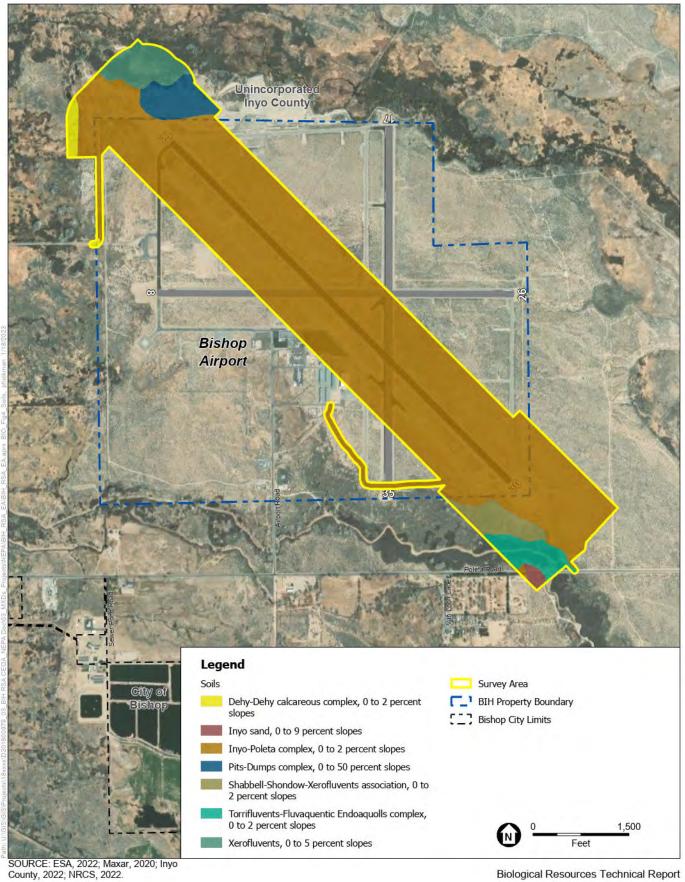
According to the NRCS soils report, seven soil units occur within the survey area, as shown in **Table 2** and **Figure 4**.

TABLE 2
MAP SOIL UNIT NAMES

| Map Unit<br>Symbol    | Map Unit Name                                                         | Acres in<br>Survey<br>Area | Percent of<br>Survey<br>Area |
|-----------------------|-----------------------------------------------------------------------|----------------------------|------------------------------|
| 189                   | Dehy-Dehy calcareous complex, 0 to 2 percent slopes                   | 3.8                        | 0.9                          |
| 221                   | Inyo sand, 0 to 9 percent slopes                                      | 2.0                        | 0.5                          |
| 224                   | Inyo-Poleta complex, 0 to 2 percent slopes                            | 346.2                      | 85.9                         |
| 281                   | Pits-Dumps complex, 0 to 50 percent slopes                            | 13.6                       | 3.4                          |
| 312                   | Shabbell-Shondow-Xerofluvents association, 0 to 2 percent slopes      | 11.4                       | 2.8                          |
| 328                   | Torrifluvents-Fluvaquentic Endoaquolls complex, 0 to 2 percent slopes | 11.3                       | 2.8                          |
| 370                   | Xerofluvents, 0 to 5 percent slopes                                   | 14.9                       | 3.7                          |
| Total for Survey Area |                                                                       | 403.2                      | 100.0%                       |

SOURCE: NRCS, 2022

The surface geology of the survey area consists predominantly of loamy sands. The majority of the soils within the survey area are formed in alluvium derived from mixed sources. The soils that make up much of the survey area are primarily well to excessively drained with slow runoff and rapid permeability.


# 3.4 Special-Status Species

Several species known to occur on or in the vicinity of the survey area are protected pursuant to federal and/or state endangered species laws or have been designated as Species of Special Concern by CDFW. In addition, Section 15380(b) of the *CEQA Guidelines* provides a definition of rare, endangered, or threatened species that are not included in any listing. Species recognized under these terms are collectively referred to as "special-status species."

\_

For example, vascular plants listed as rare or endangered or as List 1 or 2 by the California Native Plant Society (CNPS) are considered to meet Section 15380(b) criteria.

A list of special-status species with potential to occur on or in the vicinity of the survey area was compiled from a nine-quad search of the California Natural Diversity Database (CNDDB) (CDFW 2022d), a nine-quad search on the CNPS Rare Plant Inventory (CNPS 2022a), a survey area search of the USFWS endangered species database (USFWS 2022), and biological literature on the region for the surrounding 7.5-minute USGS topographic quadrangles. The quadrangles for the survey area were Bishop, Poleta Canyon, Laws, and Fish Slough. **Figures 5-1** and **5-2** are maps of CNDDB special-status wildlife and plant species occurrences within 5 miles of the survey area.



Biological Resources Technical Report

Figure 4 Soil Map



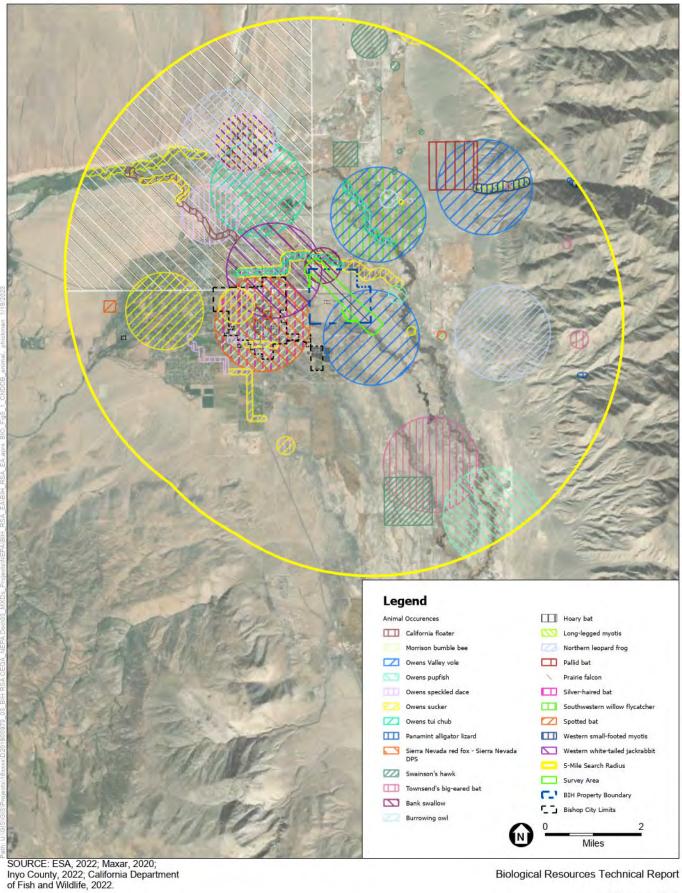
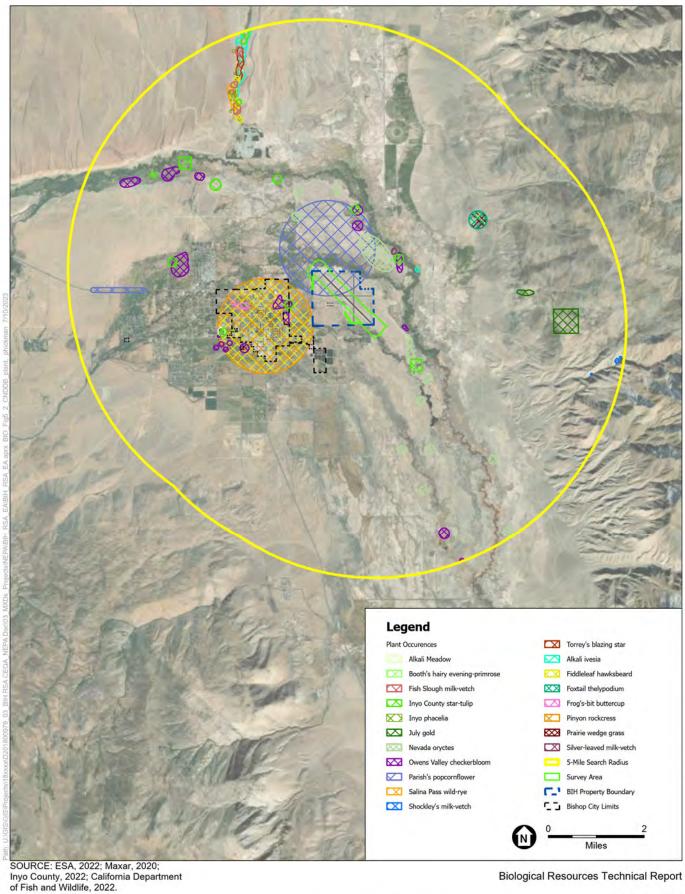




Figure 5-1 CNDDB Occurrences within 5 miles of the Survey Area Wildlife





**ESA** 

Figure 5-2

From the full list of species, each was then individually assessed based on habitat requirements and distribution relative to vegetation communities and habitat features that occur in and around the survey area. A comprehensive list of special-status species that were considered in the analysis is provided in **Appendix B-1** of this Technical Report, *Special-Status Species with Potential to Occur within the Survey Area*.

### 3.4.1 Special-Status Plants

No special-status plants were identified during the November 1, 2022 biological reconnaissance surveys of the survey area. Based on the habitat types and conditions within the survey area, along with review of background information and database searches, a variety of special-status plant species have potential to occur in the survey area and are listed in Appendix B-1.

# 3.4.2 Special-Status Wildlife Species

No federal or state-listed wildlife species were observed during the November 1, 2022, reconnaissance surveys within the survey area. Based on the habitat types and conditions within the survey area, along with review of background information and database searches a variety of special-status wildlife species have potential to occur in the survey area and are listed in Appendix B-1. No work is planned in-water, so no impacts to aquatic species are expected to occur.

# Federal Listed Species with Potential to Occur within the Survey Area Monarch Butterfly

The monarch butterfly is a federal candidate species and not yet listed or proposed for listing under the Endangered Species Act. In the western U.S., monarch butterflies migrate in the fall and overwinter at sites along the Pacific coast and Central Valley. Monarch's host plant, milkweed (*Asclepias* spp.), and other flowering plants are necessary for monarch butterfly habitat-adult monarchs feed on the nectar of many flowering plants during breeding and migration, but they can only lay eggs on milkweed plants (USFWS 2022d). The study area lies in the migration route of monarch butterflies, and if nectar sources and milkweed are present, individuals may occur. No milkweed plants were observed during field surveys; however, one adult monarch butterfly was observed in the survey area during the November 2022 survey.

#### Lahontan Cutthroat Trout

The Lahontan Cutthroat Trout inhabits a wide range of habitats including cold, high-elevation mountain streams in California to lower-elevation desert lakes with high alkalinity. Their range extends from the Sierra Nevada Mountains northeast into Nevada and Oregon. Although the trout once occupied a vast range, it has since been extirpated from nearly 95% of its native habitat in California. Furthermore, the historic range of the Lahontan Cutthroat Trout includes Lake Tahoe and the Carson, Truckee, and Walker River basins that occur well north of the airport (CDFW 2022a). The Cutthroat Trout species is not likely to occur in the Crowley Lake watershed—where the Airport is located. Therefore, the Proposed Project will have "no effect" on the Lahontan Cutthroat Trout or its habitat.

#### **Owens Pupfish**

Habitat for the Owens Pupfish consists of spring pools, sloughs, irrigation ditches, swamps, and flooded pastures in the Owens Valley, including Inyo County. However, this fish is confined to five relatively isolated populations, which includes the Fish Slough Area of Critical Environmental Concern (ACEC). The Fish Slough ACEC is a system of springs and marshes cooperatively managed by state and federal departments to maintain the populations of Owens Pupfish. The Fish Slough ACEC is located approximately six miles north of the City of Bishop and the survey area. It spans across the Inyo and Mono County border and consists of rare habitat in the Mojave Desert and Great Basin biomes (CDFW 2022b). The ACEC also provides habitat for rare endemic plants, such as the Fish Slough Milk-vetch. Although Fish Slough ACEC is hydrologically connected to the Owens River, its unique biome and distance make it a relatively unlikely path of migration to the North Fork Bishop Creek or Rawson Canal. Therefore, the Proposed Project will have "no effect" on the Owens Pupfish or its habitat.

#### Owens Tui Chub

Critical Habitat for Owens Tui Chub does not exist on or adjacent to the survey area. The distribution of the Owens Tui Chub extends throughout the Owens River and its larger tributaries extending from its source springs to Owens Lake. However, there are three existing natural populations that are present. They are located at the Owens River Gorge, source springs of the Department's Hot Creek Hatchery, and at Cabin Bar Ranch near Owens Dry Lake (CDFW 2002, CDFW 2022c). The Owens River Gorge is located about seven miles northwest of the survey area and represents the closest population of this fish species. Additional populations have been established in cooperation with landowners at the Bureau of Land Management's Mule Spring, Little Hot Creek in Inyo National Forest, and at the University of California White Mountain Research Station owned by the LADWP. Given the distance of North Fork Bishop Creek and Rawson Canal to the Owens River Gorge, combined with its populations' isolation, it is unlikely that the Owens Tui Chub would be found in the survey area. Therefore, the Proposed Project will have "no effect" on the Owens Tui Chub or its habitat.

#### Fish Slough Milk-vetch

The Fish Slough Milk-vetch is largely dependent on desert spring-fed wetland ecosystems that consist of highly alkali soils and is listed by the USFWS as a species of concern that could be present in the survey area. After reviewing the CNPS Calflora, the Fish Slough Milk-vetch has been positively identified in Inyo County (CNPS 2022b). However, the closest population is approximately five miles from the survey area and there are no historical records of its presence on Airport property. Furthermore, it has not been detected from field surveys conducted at the Airport. Therefore, the Proposed Project will have "no effect" on the Fish Slough Milk-vetch or its habitat.

#### Southwestern Willow Flycatcher

The SWFL (*Empidonax traillii extimus*) is a subspecies of Willow Flycatcher found in the Southwestern United States, and the only subspecies of Willow Flycatcher known to breed in the Owens River Valley (Paxton 2000). Several other subspecies of Willow Flycatcher that breed further north pass through the area during spring and fall migration (*E. t. brewsteri*, *E. t. adastus*).

Multiple databases were queried for records of Willow Flycatchers observed in the Proposed Project vicinity, with a focus on records between the days of June 15 and July 20 of each year, the "non-migrant period," where individuals observed are presumed to be *E. t. extimus* (Willow Flycatchers are not reliably separated in the field to subspecies by other means). Records of Willow Flycatchers in the Bishop area were found during 2022 on eBird (eBird 2022b); however, these observations were not during the non-migrant period. The most recent observation during the non-migrant period was in 2003 (CNDDB 2022), approximately six miles northwest of BIH along Horton Creek. A separate search on USFWS ECOS database indicates that there is no SWFL critical habitat within or in close proximity to the survey area.

The SWFL occurs in riparian woodlands in Southern California. It prefers riparian areas dominated by willow trees along streams or the margins of a pond or lake, and at wet mountain meadows. Based on the recent field survey, there is potential suitable habitat to support the SWFL at riparian locations along the North Fork Bishop Creek and Rawson Canal by providing opportunities to forage within or near the survey area on occasion. However, on-site species-specific surveys, conducted by ESA in 2019 and 2020, did not confirm the presence of SWFL within or near the survey area and described the habitat as low-quality. Habitat quality has not changed since these surveys were conducted, and the potential suitable habitat is cut back for maintenance by LAPWD intermittently, therefore potential to occur is low.

#### State Listed Species with Potential to Occur within the Survey Area

State listed special-status species were identified with the potential to occur in the survey area or in its immediate surroundings. A full list of the special species of concern listed by the CDFW is included in Appendix B-1 of this Technical Report. A discussion of state listed species of concern with potential to occur (not already discussed in sections above) is included below.

#### Owens Valley Vole

The Owens Valley Vole makes its home in groundwater-dependent meadows or near streams and riverbanks where soils are moist. During the previous field reviews, soils located within BIH's property limits were identified as dry, and unlikely to support the Owens Valley Vole, due to a lack of suitable habitat for the species. While CNDDB records for this species indicate its presence near the southeast corner of the Airport, all records are historical, with no present records of its occurrence at BIH (CNDBB 2022). It is not expected that this species will occur within the Proposed Project site.

#### Yellow-breasted Chat

The Yellow-breasted Chat breeds in areas of dense shrubbery, including abandoned farm fields, clearcuts, powerline corridors, fencerows, forest edges and openings, swamps, and edges of streams and ponds. Its habitat often includes blackberry bushes and other thickets. In arid regions of the West, it can be found in shrubby habitats along rivers. During migration, it usually stays in low, dense vegetation along rivers (eBird 2022a).

The Yellow-breasted Chat is considered by the CDFW as a Bird Species of Special Concern with a low risk of global extinction but a moderate risk of extirpation in the state due to a restricted

range, relatively few populations or occurrences, recent and widespread declines, and threats to its population. The Yellow-breasted Chat was observed daily within the survey during field surveys conducted by ESA in May 2020 and June 2019. The bird species was identified in the northwestern portion of the survey along North Fork Bishop Creek. In Inyo County, chats historically breed along the Owens River (north to Birchim Canyon), chats were only present at 1 of 18 of its tributaries (Hogback Creek), surveyed 1998-2000 (Shuford et al., 2008b). Birchim Canyon is about 16 miles north-east of the study area, while Hogback Creek is approximately 60 miles south of the study area.

#### **Burrowing Owl**

The search on CNDDB showed recent observations of burrowing owls within the vicinity of the Airport. However, there were no burrows observed within the survey area during the surveys conducted in November 2022, May 2020, and June 7, 2019. The unpaved portions of the Airport property are generally suitable for burrowing owls, although areas of rabbitbrush may cause a visible obstruction of their surroundings, creating a less suitable condition for the owls. Additionally, no ground squirrels or burrows were observed in the area, and the most suitable areas for burrowing owls are frequently graded as part of BIH's ongoing operations and maintenance activities. It is not expected that this species will occur within the Proposed Project site.

#### Yellow Warbler

The Yellow Warbler spends the breeding season in thickets and other disturbed habitats, particularly along streams and wetlands. They are often found among willows, but also live in small birch stands in high alpine environments. In the Mountain West they can occur at high elevations and among aspen groves. Yellow Warblers occur in low densities on the Owens Valley floor, in Inyo County (Shuford et al., 2008a). Extensive surveys from 2001-2004 done along 70 miles of the lower Owens River found no breeding Yellow Warblers downstream of the Los Angeles Aqueduct (Shuford et al., 2008a). The Yellow Warbler is considered a California Bird Species of Special Concern. However, the CDFW designates the species as secure from global extinction and vulnerable/apparently secure from state extirpation. The species was observed daily within the survey area during field surveys conducted in May 2020 and June 2019. The bird species was identified in the shrubby wetland habitat in the northwestern portion of the survey along North Fork Bishop Creek.

#### Northern Harrier

The Northern Harrier prefers undisturbed wetlands and grasslands with low but thick vegetation. Breeding habitat includes freshwaters and saline marshes, meadows, old fields, upland prairies, high-desert shrub-steppe, and riverside woodlands. Populations in the western U.S. tend to be found in dry upland habitats. The Northern Harrier is listed as a California Bird Species of Special Concern; however, the CDFW designates the species as secure from global extinction and vulnerable from state extirpation. The species was observed foraging over the Airport grounds during surveys conducted in May 2020 and June 2019 and may roost near the eastern boundary of the Airport. As this species was only seen during visits early in the field season, and not during subsequent visits, this species is unlikely to nest in the survey area.

# 3.5 Migratory Bird Treaty Act Bird Species in the Survey Area

The Migratory Bird Treaty Act (MBTA) of 1918 makes it illegal for anyone to take any migratory bird, nest, or eggs except under the terms of a valid permit. The migratory bird species in the area include hawks and other raptors, among many others. The birds listed in USFWS IPaC Report (**Appendix B-2** of this Technical Report) are considered birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in the survey area (USFWS 2021). This list is included in this assessment for information purposes—species specific surveys were not conducted except for the SWFL.

#### 3.6 Wildlife Movement Corridors

Wildlife movement corridors link together areas of suitable wildlife habitat that are otherwise separated by rugged terrain, changes in vegetation, or by areas of human disturbance or urban development. Topography and other natural factors in combination with urbanization can fragment or separate large open-space areas. The fragmentation of natural habitat can create isolated "islands" of vegetation and habitat that may not provide sufficient area to accommodate sustainable populations and can adversely impact genetic and species diversity. The retention of wildlife movement corridors ameliorates the effects of such fragmentation by allowing animals to move between remaining habitats, which in turn allows depleted populations to be replenished. Such movement may also promote genetic exchange between separated populations.

The survey area is somewhat of an isolated habitat range for current species that utilize the area. There are two mountain ranges on either side of Bishop and Owen's Valley that can pose as barriers to current wildlife populations in the area. The survey area is currently used for the Bishop Airport runways and some off-road vehicle use. Wildlife can pass through or over fencing and can move through the survey area from surrounding grasslands/agriculture/mountains. Surrounding non-disturbed areas provide access and movement for wildlife to move north/south throughout the region. There is no woody plant cover and little forage available for wildlife to reside in the area long term.

# 3.7 Critical Habitat for Listed Fish and Wildlife Species

The USFWS defines the term "critical habitat" in the Federal Endangered Species Act as a specific geographic area(s) that contains features essential for the conservation of a threatened or endangered species and that may require special management and protection. The USFWS has designated Critical Habitat for Owens Tui Chub and Fish Slough Milk-vetch, but this Critical Habitat does not exist on or adjacent to the survey area. Critical Habitat for the Western Yellow-billed Cuckoo is proposed and under review, but the closest proposed location is over 100 miles south of the survey area.

# 3.8 Heritage and Protected Trees

The survey area does not support any trees protected by local tree ordinances, and no trees would be removed, trimmed, or damaged during project related work.

# 3.9 Wetlands, Waters, and Riparian Habitat

The survey area includes wetlands and waters, as documented in the Aquatic Resource Delineation Report (ESA 2023). The forested wetlands and scrub-shrub wetlands are also considered to be riparian habitat. Rawson Canal is both a Water of the U.S. and State. Any actions that result in filling the waters and wetlands would require authorization under Section 404/401 of the federal Clean Water Act and the state Porter-Cologne Water Quality Control Act. Work in, above, or near the riparian areas or channels could require a Streambed Alteration Agreement with CDFW pursuant to §1600 of State Fish and Game Code.

# **CHAPTER 4**

# Conclusions

The Proposed Project does not include any ground disturbance within or immediately surrounding the survey area that may affect habitat or threatened or endangered species and there is no designated critical habitat present. The Proposed Project is expected to produce "no effect" on federally listed fish, plant, and avian species within or immediately surrounding the survey area. Furthermore, the Proposed Project will have no effect on state species of special concern identified during site surveys, including the Northern Harrier, Yellow Warbler, and Yellow-breasted Chat.

4. Conclusions

This page intentionally left blank

## **CHAPTER 5**

# References

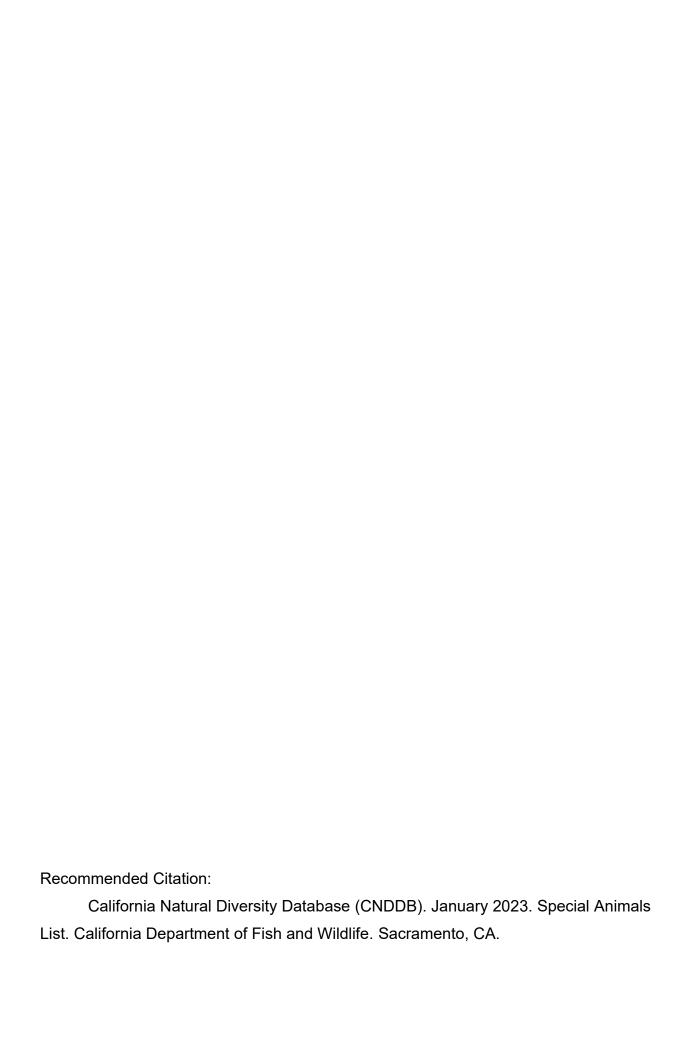
- California Department of Fish and Wildlife (CDFW). 2013. Appendix I CDFW's Conservation Measures for Biological Resources That May Be Affected by Program-level Actions. https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=73979 Accessed: January 25, 2023.
- ——. 2022a. Conservation and Management of Wildlife and Habitat: Species Management. Fish species information and conservation efforts for Lahontan cutthroat trout (*Oncorhynchus clarkii henshawi*). Available: https://wildlife.ca.gov/Conservation/Fishes/Lahontan-Cutthroat-Trout. Accessed December 1, 2022.
- ———. 2022b. Conservation and Management of Wildlife and Habitat: Species Management. Fish species information and conservation efforts for Owens pupfish (*Cyprinodon radiosus*). Available: https://wildlife.ca.gov/Regions/6/Desert-Fishes/Owens-pupfish. Accessed December 01, 2022.
- ———. 2022c. Conservation and Management of Wildlife and Habitat: Species Management. Fish species information and conservation efforts for Owens Tui chub (*Siphaltes bicolor snyderi*). Available: https://wildlife.ca.gov/Regions/6/Desert-Fishes/Owens-tui-chub. Accessed December 1, 2022.
- ———. 2022d. California Natural Diversity Database (CNDDB) search for the U.S. Geological Survey 7.5-minute Bishop Airport, Bishop, CA topographic quadrangles, and surrounding 9 quadrangles; information accessed December 01, 2022.
- California Native Plant Society (CNPS). 2022a. Inventory of Rare and Endangered Plants of California (online edition, v9-01 1.5). Rare Plant Program. Available: www.rareplants.cnps.org. Accessed November 2022.
- ———. 2022b. Calflora Database: observation search for Fish slough milk-vetch (*Astragalus lentiginosus* var. *piscinesis*). Available: https://www.calflora.org/entry/observ.html?track= m#srch=t&cols=0,3,61,35,37,13,54,32,41&lpcli=t&taxon=Astragalus+lentiginosus+var.+piscinensis&chk=t&cch=t&inat=r&cc=INY. Accessed December 01, 2022.
- eBird, The Cornell Lab of Ornithology. 2022a. All About Birds: Yellow-breasted Chat (*Icteria virens*) Overview. Available: https://www.allaboutbirds.org/guide/Yellow-breasted\_Chat/overview. Accessed December 01, 2022.
- 2022b. eBird Species Map: willow flycatcher (southwestern) (*Empidonax traillii extimus*) Available: https://ebird.org/map/wilfly3?neg=true&env.minX=&env.minY= &env.maxX=&env.maxY=&zh=false&gp=false&ev=Z&excludeEx=&mr=1-12&bmo= 1&emo=12&yr=all&byr=1900&eyr=2022. Accessed December 08, 2022.

- Google, Inc. 2022. Google Earth (Version 7.3.2.5776) [Software]. Available: www.google.com/earth/. Accessed November 2022.
- iNaturalist. Available: https://www.inaturalist.org. Accessed November 2022.
- Paxton, E.H. 2000. Molecular genetic structuring and demographic history of the willow flycatcher. MS thesis, Northern Arizona University, Flagstaff, AZ. 43 pp.
- Sawyer, J.O., T. Keeler-Wolf, and J.M. Evens. 2009. A Manual of California Vegetation. 2nd Edition. California Native Plant Society.
- Shuford, W.D. and Gardali, T., editors. 2008. California Bird Species of Special Concern: A ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California. Studies of Western Birds 1:332-339. Species accounts: yellow warbler (*Dendroica petechia*).
- ———. 2008. California Bird Species of Special Concern: A ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California. Studies of Western Birds 1:351-358. Species accounts: Yellow-breasted Chat (*Icteria virens*).
- University and Jepson Herbaria (UC/JEPS), University of California, Berkeley. California Flora, Jepson eFlora: ucjeps.berkley.edu/eflora. Accessed December 01, 2022.
- Natural Resources Conservation Service (NRCS). 2022. Custom Soil Resource Report for Benton-Owens Valley Area Parts of Inyo and Mono Counties, California. Available: http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. Accessed November 2022.
- U.S. Fish and Wildlife Service (USFWS). 2021. Birds of Conservation Concern 2021: Migratory Bird Program. Available: https://www.fws.gov/media/birds-conservation-concern-2021pdf. Accessed December 12, 2022.
- ———. 2022a. National Wetland Inventory. https://www.fws.gov/wetlands/data/Mapper.html. Accessed November 2022.
- ———. 2022b. Information for Planning and Consultation (IPaC). Species list generated December 08, 2022, via: https://ipac.ecosphere.fws.gov.
- ———. 2022d. U.S. Fish and Wildlife Service (USFWS). Monarch butterfly (*Danus plexippus*). Available: https://www.fws.gov/species/monarch-danaus-plexippus. Accessed November 2022.
- U.S. Geological Survey (USGS). 2022a. USGS Historical Topographic Map Explorer. Available: http://historicalmaps.arcgis.com/usgs/. Accessed November 2022.
- . 2022b. National Hydrography Dataset (NHD). Available: https://www.usgs.gov/national-hydrography/national-hydrography-dataset. Accessed November 2022.

# Appendix B-1 Special-Status Species with Potential to Occur within the Survey Area

# SPECIAL ANIMALS LIST

January 2023


State of California

Natural Resources Agency

Department of Fish and Wildlife

Biogeographic Data Branch

California Natural Diversity Database (CNDDB)



# **Table of Contents**

| Special Animals                            | i    |
|--------------------------------------------|------|
| NatureServe Element Ranking                | iii  |
| Animal Element Occurrences and Mapping     | viii |
| Taxonomic Standards                        | ix   |
| Listing and Special Status Information     | Xi   |
| Table of Special Status Code Abbreviations | xvi  |
| Special Animals List                       | xvii |

### **Special Animals**

"Special Animals" is a broad term used to refer to all the animal taxa tracked by the California Department of Fish and Wildlife's (CDFW) California Natural Diversity Database (CNDDB), regardless of their legal or protection status. This list is also referred to as the list of "species at risk" or "special status species." The Special Animals List includes species, subspecies, Distinct Population Segments (DPS), or Evolutionarily Significant Units (ESU) where at least one of the following conditions applies:

- Officially listed or proposed for listing under state and/or federal endangered species acts
- Taxa considered by the Department of Fish and Wildlife to be a Species of Special Concern (SSC)
- Taxa which meet the criteria for listing, even if not currently included on any list, as described in Section 15380 of the <u>California Environmental Quality Act</u> Guidelines
- Taxa that are biologically rare, very restricted in distribution, or declining throughout their range, but not currently threatened with extirpation
- Population(s) in California that may be peripheral to the major portion of a taxon's range but are threatened with extirpation in California
- Taxa closely associated with a habitat that is declining in California at a significant rate (e.g., wetlands, riparian, vernal pools, old growth forests, desert aquatic systems, native grasslands, valley shrubland habitats, etc.)
- Taxa designated as a special status, sensitive, or declining species by other state or federal agencies, or a non-governmental organization (NGO), and determined by the CNDDB to be rare, restricted, declining, or threatened across their range in California

The Special Animals List contains taxa that are actively inventoried, tracked, and mapped by the CNDDB, as well as taxa for which mapped data may not yet be incorporated into CNDDB user products. For the latter taxa, information at the county

and 7.5-minute USGS quadrangle level can be accessed via the <u>CNDDB QuickView</u> Tool.

Taxa with a "Yes" in the "End Notes?" column have additional information in the End Notes section at the back of the list.

Additional information about the California Natural Diversity Database is available on the CNDDB website.

Information on other CDFW resource management programs is available on the Department's Conservation and Management of Wildlife and Habitat website.

The CDFW <u>Wildlife Diversity Program</u> provides additional information on wildlife habitat, threats, and survey guidelines.

### NatureServe Element Ranking

The California Natural Diversity Database program is a member of the NatureServe Network of natural heritage programs, and uses the same conservation status methodology as other network programs. The ranking system was originally developed by The Nature Conservancy and is now maintained and recently revised by NatureServe. It includes a **Global rank** (G-rank), describing the status for a given taxon over its entire distribution, and a **State rank** (S-rank), describing the status for the taxon over its state distribution. For subspecies and varieties, there is also a "T" rank describing the global rank for the infraspecific taxon. The next page of this document details the criteria used to assign element ranks, from G1 to G5 for the Global rank and from S1 to S5 for the State rank. Procedurally, state programs such as the CNDDB develop the State ranks. The Global ranks are determined collaboratively among the Heritage Programs for the states/provinces containing the species. NatureServe then checks for consistency and logical errors at the national level. Because the units of conservation may include non-taxonomic biological entities such as populations or ecological communities, NatureServe refers to the targets of biological conservation as "elements" rather than taxa.

An element rank is assigned using standard criteria and rank definitions. This standardization makes the ranks comparable between organisms and across political boundaries. NatureServe has developed a "rank calculator" to help increase repeatability and transparency of the ranking process. The three main categories that are taken into consideration when assigning an element rank are rarity, threats, and trends. Within these three categories, various factors are considered, including:

- Range extent, area of occupancy, population size, total number of occurrences, and number of good occurrences (ranked A or B). Environmental specificity can also be used if other information is lacking.
- Overall threat impact as well as intrinsic vulnerability (if threats are unknown).
- Long-term and short-term trends.

Detailed information on this element ranking methodology can be found on the NatureServe Conservation Status Assessment website.

Listed below are definitions for interpreting global and state conservation status ranks. An element's ranking status may be adjusted up or down depending upon the considerations above.

#### **Global Ranking**

The global rank (G-rank) is a reflection of the overall status of an element throughout its global range.

- GX: Presumed Extinct Not located despite intensive searches and virtually no likelihood of rediscovery.
- GH: Possibly Extinct Known from only historical occurrences but still some hope of rediscovery. Examples of evidence include (1) that a species has not been documented in approximately 20-40 years despite some searching and/or some evidence of significant habitat loss or degradation; (2) that a species has been searched for unsuccessfully, but not thoroughly enough to presume that it is extinct throughout its range.
- G1: Critically Imperiled At very high risk of extinction due to very restricted range, very few populations or occurrences, very steep declines, very severe threats, or other factors.
- **G2: Imperiled** At high risk of extinction due to restricted range, few populations or occurrences, steep declines, severe threats, or other factors.
- G3: Vulnerable At moderate risk of extinction due to a fairly restricted range, relatively few populations or occurrences, recent and widespread declines, threats, or other factors.
- G4: Apparently Secure At fairly low risk of extinction due to an extensive range and/or many populations or occurrences, but with possible cause for some concern as a result of local recent declines, threats, or other factors.

- G5: Secure At very low risk of extinction due to a very extensive range, abundant populations or occurrences, and little to no concern from declines or threats.
- GNR: Unranked Global rank not yet assessed.

#### State Ranking

The state rank (S-rank) is assigned in much the same way as the global rank, but state ranks refer to the imperilment status only within California's state boundaries.

- SX: Presumed Extirpated Species is believed to be extirpated from the state
  Not located despite intensive searches of historical sites and other appropriate
  habitat, and virtually no likelihood that it will be rediscovered
- SH: Possibly Extirpated Known from only historical records but still some hope of rediscovery. There is evidence that the species may no longer be present in the state, but not enough to state this with certainty. Examples of such evidence include (1) that a species has not been documented in approximately 20-40 years despite some searching and/or some evidence of significant habitat loss or degradation; (2) that a species has been searched for unsuccessfully, but not thoroughly enough to presume that it is no longer present in the jurisdiction.
- **S1: Critically Imperiled** At very high risk of extirpation in the state due to very restricted range, very few populations or occurrences, very steep declines, severe threats, or other factors.
- **S2: Imperiled** At high risk of extirpation in the state due to restricted range, few populations or occurrences, steep declines, severe threats, or other factors.
- **S3: Vulnerable** At moderate risk of extirpation in the state due to a fairly restricted range, relatively few populations or occurrences, recent and widespread declines, threats, or other factors.
- S4: Apparently Secure At a fairly low risk of extirpation in the state due to an
  extensive range and/or many populations or occurrences, but with possible
  cause for some concern as a result of local recent declines, threats, or other
  factors.

- S5: Secure At very low or no risk of extirpation in the state due to a very
  extensive range, abundant populations or occurrences, and little to no concern
  from declines or threats.
- SNR: Unranked State rank not yet assessed.

#### Additional Notes on NatureServe Ranks

#### Rank Qualifiers

- Taxa which are subspecies receive a taxon rank (T-rank) in addition to the G-rank. Whereas the G-rank reflects the condition of the entire species, the T-rank reflects the global status of just the subspecies. For example, the Point Reyes mountain beaver, Aplodontia rufa ssp. phaea, is ranked G5T2. The G-rank refers to the whole species, i.e., Aplodontia rufa; the T-rank refers only to the global condition of ssp. phaea.
- C = Captive or Cultivated Only taxon at present is presumed or possibly extinct or eliminated in the wild across their entire native range but is extant in cultivation, in captivity, as a naturalized population (or populations) outside their native range, or as a reintroduced population not yet established. The "C" modifier is only used at a global level and not at a state level. Possible ranks are GXC or GHC.
- Q = Questionable taxonomy that may reduce conservation priority Distinctiveness of this entity as a taxon at the current level is questionable; resolution of this uncertainty may result in change from a species to a subspecies or hybrid, or inclusion of this taxon in another taxon, with the resulting taxon having a lower-priority (numerically higher) conservation status rank. The "Q" modifier is only used at the global level, not at the state level.
- Uncertainty about the status of an element is expressed in two major ways:
  - By expressing the ranks as a range of values: e.g., S2S3 indicates the rank is somewhere between S2 and S3.
  - By adding a "?" to the rank: e.g., S2?; this represents more certainty than
     S2S3, but less certainty than S2.

Other considerations used when ranking a species include the pattern of
distribution of the element on the landscape, fragmentation of the population, and
historical extent as compared to its modern range. It is important to take an
overall view when ranking sensitive elements rather than simply counting
element occurrences.

### **Animal Element Occurrences and Mapping**

#### What is an Element Occurrence?

An Element Occurrence (EO) is a location where a given element has been documented to occur. It is a concept developed and applied within the NatureServe natural heritage network. An EO is not a population, but may indicate that a population is present in that area; likewise, a single population may be represented by more than one EO. An EO is based upon the source documents available at the time of mapping. Both the mapped feature and the text portion of EOs are updated as new information becomes available.

#### Element Occurrence Definitions Vary by Taxa

The EO definition refers to the types of information mapped. For most animal taxa, the CNDDB is interested in information that indicates the presence of a resident population. However, for many migratory birds, the CNDDB only tracks detections of nest sites or behaviors indicating reproduction is occurring at the site. Details about avian detections are available in the <a href="Submitting Avian Detections">Submitting Avian Detections</a> document. For other taxa where CNDDB tracks only a certain part of the range or life history, the area or life stage is indicated on the list under the "Comment" column.

#### **Mapping Conventions**

Information in CNDDB is mapped to balance precision and uncertainty, based upon the source materials used to determine the location of the Element Occurrence. Data with precise location information are mapped with 80m-radius circles or specific polygons. Data with vague location information are mapped with non-specific circular features or non-specific polygons. Non-specific features indicate that the species was found somewhere within the mapped area, but the exact location was unknown. Generally, observations/collections within ¼ mile and/or within continuous habitat are combined into a single EO.

#### **Taxonomic Standards**

#### Taxonomic References and Sources of Additional Information

The CNDDB follows current published taxonomy for animals as recognized by the scientific organizations listed below. The CNDDB reviews publications that propose new taxonomy and nomenclature for CNDDB-tracked species and evaluates whether these proposals are recognized by the larger scientific community. The CNDDB makes every effort to use the best available science in the taxonomy used, but different experts may recognize different names for some time after a taxonomic change is proposed. In these cases, the CNDDB will generally use the preexisting nomenclature until a change is formally recognized beyond the initial publication. In addition, the CNDDB recognizes some taxa identified by experts on the California fauna where these taxa may not be recognized by national biological societies. Generally, the taxonomy used by NatureServe is followed, with additional evaluation of taxonomy from the following sources:

- Reptiles and amphibians:
  - The Center for North American Herpetology
  - o The Society for the Study of Amphibians and Reptiles

#### Fishes:

- o Fricke, R., Eschmeyer, W. N. & R. van der Laan (eds) 2022. <u>Eschmeyer's</u> catalog of fishes: genera, species, references. Electronic version.
- O Jelks, H.L., S.J. Walsh, N.M. Burkhead, S. Contreras-Balderas, E. Díaz-Pardo, D.A. Hendrickson, J. Lyons, N.E. Mandrak, F. McCormick, J.S. Nelson, S.P. Platania, B.A. Porter, C.B. Renaud, J.J. Schmitter-Soto, E.B. Taylor, and M.L. Warren, Jr. 2008. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33(8):372-407.
- Lawrence M. Page, Héctor Espinosa-Pérez, Lloyd T. Findley, Carter R.
   Gilbert, Robert N. Lea, Nicholas E. Mandrak, Richard L. Mayden, and
   Joseph S. Nelson. 2013. Common and scientific names of fishes from the

- <u>United States, Canada, and Mexico, 7<sup>th</sup> edition</u>. American Fisheries Society, Special Publication 34. 243 pp.
- Moyle, P. B. 2002. Inland fishes of California. University of California Press.

#### Birds:

o The checklist of the American Ornithologists' Union

#### Mammals:

- o The American Society of Mammalogists
- Bradley, R.D., L.K. Ammerman, R.J. Baker, L.C. Bradley, J.A. Cook, R.C. Dowler, C. Jones, D.J. Schimdly, F.B. Stangl Jr., R.A. Van Den Bussche, and B. Wursig. 2014. <u>Revised checklist of North American mammals north of Mexico, 2014</u>. Museum of Texas Tech University Occasional Papers 327:1-28.

# Listing and Special Status Information

**CALIFORNIA ENDANGERED SPECIES ACT (CESA) LISTING CODES:** The listing status of each species is current as of the date of this list. The most current changes in listing status will be found in the "Endangered and Threatened Animals List," which the CNDDB updates and issues quarterly. Additional information can be found on the California Fish and Game Commission CESA web page.

- SE State listed as endangered
- ST State listed as threatened
- SCE State candidate for listing as endangered
- SCT State candidate for listing as threatened
- SCD State candidate for delisting

**FEDERAL ENDANGERED SPECIES ACT (ESA) LISTING CODES:** The listing status is current as of the date of this list. The most current changes in listing status will be found in the "Endangered and Threatened Animals List," which the CNDDB updates and issues quarterly. Federal listing actions are published in the <u>Federal Register</u>.

- FE Federally listed as endangered
- FT Federally listed as threatened
- FPE Federally proposed for listing as endangered
- FPT Federally proposed for listing as threatened
- FPD Federally proposed for delisting
- FC Federal candidate species (former Category 1 candidates)

Section 4(c)(2)(A) of the Act requires the U.S. Fish and Wildlife Service and the National Marine Fisheries Service to conduct a review of listed species at least once every five years. Five year reviews are made available by the <u>U.S. Fish and Wildlife Service</u> and the <u>National Marine Fisheries Service</u>.

**OTHER STATUS CODES:** The status of species on the Special Animals List according to other conservation organizations is provided below. Taxa on these lists are reviewed for inclusion in the CNDDB Special Animals List, but are not automatically included. For

example, taxa that are regionally rare within a portion of California may not be included, because they may be of lesser conservation concern across their full range in California.

#### American Fisheries Society (AFS):

- Designations for freshwater and diadromous species were taken from the paper:
  - Jelks, H.L., S.J. Walsh, N.M. Burkhead, S. Contreras-Balderas, E. Díaz-Pardo, D.A. Hendrickson, J. Lyons, N.E. Mandrak, F. McCormick, J.S. Nelson, S.P. Platania, B.A. Porter, C.B. Renaud, J.J. Schmitter-Soto, E.B. Taylor, and M.L. Warren, Jr. 2008.
    Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33(8):372-407.
- Designations for marine and estuarine species were taken from the paper:
  - Musick, J.A. et al. 2000. <u>Marine, Estuarine, and Diadromous Fish</u>
     <u>Stocks at Risk of Extinction in North America (Exclusive of Pacific Salmonids)</u>. Fisheries 25(11):6-30.
- Bureau of Land Management (BLM) Sensitive: Bureau of Land Management Manual §6840 states that "BLM sensitive species are: (1) species listed or proposed for listing under the Endangered Species Act (ESA), and (2) species requiring special management consideration to promote their conservation and reduce the likelihood and need for future listing under the ESA, which are designated as Bureau sensitive by the State Director(s). All Federal candidate species, proposed species, and delisted species in the 5 years following delisting will be conserved as Bureau sensitive species." Downloadable copies of the California-BLM Special Status Animals and Sensitive Species Lists are available.
- California Department of Forestry and Fire Protection (CDF) Sensitive:
   California Department of Forestry and Fire Protection classifies "sensitive species" as those species that warrant special protection during timber operations. The list of "sensitive species" is given in §895.1 (Definitions) of the California Forest Practice Rules.

- **CDFW Fully Protected:** The classification of Fully Protected was the State's initial effort to identify and provide additional protection to those animals that were rare or faced possible extinction. Lists were created for fish, amphibians and reptiles, birds, and mammals. Most of the species on these lists have subsequently been listed under the California and/or federal endangered species acts; the exceptions are white-tailed kite, golden eagle, trumpeter swan, northern elephant seal, and ringtail cat. The white-tailed kite and the golden eagle are tracked in the CNDDB. Three subspecies of ringtail are tracked (Bassariscus astutus octavus, B. a. willetti, B. a. yumanensis), two are not (B. a. raptor and B. a. nevadensis). The trumpeter swan and northern elephant seal are also not tracked. The Fish and Game Code sections dealing with Fully Protected species state that these species "...may not be taken or possessed at any time and no provision of this code or any other law shall be construed to authorize the issuance of permits or licenses to take any fully protected" species, although take may be authorized for necessary scientific research. This language arguably makes the "Fully Protected" designation the strongest and most restrictive regarding the "take" of these species. In 2003, code sections dealing with Fully Protected species were amended to allow the Department to authorize take resulting from recovery activities for state-listed species. More information on Fully Protected species and the take provisions can be found in the Fish and Game Code: birds at §3511, mammals at §4700, reptiles and amphibians at §5050, and fish at §5515). Additional information on Fully Protected fish can be found in the California Code of Regulations, Title 14, Division 1, Subdivision 1, Chapter 2, Article 4, §5.93. The category of Protected Amphibians and Reptiles in Title 14 has been repealed.
- CDFW Species of Special Concern (SSC): It is the goal and responsibility of
  the Department of Fish and Wildlife to maintain viable populations of all native
  species. To this end, the Department has designated certain vertebrate species
  as "Species of Special Concern" because declining population levels, limited
  ranges, and/or continuing threats have made them vulnerable to extinction. The
  goal of designating SSCs is to halt or reverse their decline by calling attention to

- their plight and addressing the issues of concern early enough to secure their long-term viability. Not all SSCs have declined equally; some species may be just starting to decline, while others may have already reached the point where they meet the criteria for listing as a threatened or endangered under state and/or federal endangered species acts.
- CDFW Watch List Species: Watch list species are taxa that were previously SSCs but do not currently meet SSC criteria, and for which there is concern and a need for additional information to clarify status.
- International Union for Conservation of Nature (IUCN) Red List of
  Threatened Species: The IUCN assesses, on a global scale, the conservation
  status of species, subspecies, varieties, and even selected subpopulations in
  order to highlight taxa threatened with extinction, and therefore promote their
  conservation. Detailed information is available from the IUCN Red List Online.
- Concern: Section 202 of the Marine Mammal Protection Act (MMPA) directs the MMC, in consultation with its Committee of Scientific Advisors, to make recommendations to the Department of Commerce, the Department of the Interior, and other federal agencies on research and management actions needed to conserve species of marine mammals. To meet this charge, the Commission devotes special attention to particular species and populations that are vulnerable to various types of human-related activities, impacts, and contaminants. Such species may include marine mammals listed as endangered or threatened under the federal ESA or as depleted under the MMPA. In addition, the Commission often directs special attention to other species or populations of marine mammals not so listed whenever special conservation challenges arise that may affect them. More information on the MMPA and the list of species is available from the MMC Marine Mammal Species and Populations of Concern website.
- North American Bird Conservation Initiative (NABCI): The North American
  Bird Conservation Initiative is a coalition of government agencies and private
  organizations that works to ensure the long-term health of North America's native

- bird populations. They publish an annual <u>State of the Birds report</u> which includes a watch list of bird species in need of conservation help. Species on the list are assigned to either the Red Watch List for species with extremely high vulnerability, or Yellow Watch List for species that may be range restricted or may be more widespread but with declines and high threats.
- United States Forest Service (USFS) Sensitive: The USDA Forest Service defines sensitive species as plant and animal species identified by a regional forester that are not listed or proposed for listing under the federal Endangered Species Act for which population viability is a concern, as evidenced by significant current or predicted downward trends in population numbers or density, or significant current or predicted downward trends in habitat capability that would reduce a species' existing distribution. Regional Foresters shall identify sensitive species occurring within the region. More information on California species can be found on the <a href="Pacific Southwest Region">Pacific Southwest Region (Region 5)</a> Plants and Animals site, including links to download the <a href="Regional Forester's Sensitive Animal Species List">Regional Forester's Sensitive Animal Species List</a>.
- U.S. Fish and Wildlife Service (USFWS) Birds of Conservation Concern: The
  goal of the <u>Birds of Conservation Concern 2021 report</u> is to accurately identify
  the migratory and non-migratory bird species (beyond those already designated
  as federally threatened or endangered) that represent highest conservation
  priorities and draw attention to species in need of conservation action.

# Table of Special Status Code Abbreviations

| Organization                                                    | Abbreviation |
|-----------------------------------------------------------------|--------------|
| American Fisheries Society - Endangered                         | AFS_EN       |
| American Fisheries Society - Threatened                         | AFS_TH       |
| American Fisheries Society - Vulnerable                         | AFS_VU       |
| Bureau of Land Management - Sensitive                           | BLM_S        |
| Calif Dept of Forestry & Fire Protection - Sensitive            | CDF_S        |
| Calif Dept of Fish & Wildlife - Fully Protected                 | CDFW_FP      |
| Calif Dept of Fish & Wildlife - Species of Special Concern      | CDFW_SSC     |
| Calif Dept of Fish & Wildlife - Watch List                      | CDFW_WL      |
| IUCN - Critically Endangered                                    | IUCN_CR      |
| IUCN - Endangered                                               | IUCN_EN      |
| IUCN - Vulnerable                                               | IUCN_VU      |
| IUCN - Near Threatened                                          | IUCN_NT      |
| IUCN - Least Concern                                            | IUCN_LC      |
| IUCN - Data Deficient                                           | IUCN_DD      |
| Marine Mammal Commission - Species of Special Concern           | MMC_SSC      |
| North American Bird Conservation Initiative - Red Watch List    | NABCI_RWL    |
| North American Bird Conservation Initiative - Yellow Watch List | NABCI_YWL    |
| U.S. Forest Service - Sensitive                                 | USFS_S       |
| U.S. Fish & Wildlife Service Birds of Conservation Concern      | USFWS_BCC    |

# **Special Animals List**

(935 taxa)

Last updated January 5, 2023

The remainder of this document contains the CNDDB's Special Animals List, current as of the date on the title page of this document.

#### **Invertebrates**

#### PELECYPODA (clams and mussels)

| Scientific Name           | Common Name           | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|---------------------------|-----------------------|----------|----------------|---------------|------|------|-------------------|-------------------|---------------|
| Anodonta californiensis   | California floater    |          | G3Q            | S2?           | None | None | USFS:S            | Yes               |               |
| Anodonta oregonensis      | Oregon floater        |          | G5Q            | S2?           | None | None | IUCN:LC           | Yes               |               |
| Gonidea angulata          | western ridged mussel |          | G3             | S1S2          | None | None | IUCN:VU           | Yes               |               |
| Margaritifera falcata     | western pearlshell    |          | G4G5           | S1S2          | None | None | IUCN:NT           | Yes               |               |
| Pisidium<br>ultramontanum | montane peaclam       |          | G1             | S1            | None | None | IUCN:VU<br>USFS:S | Yes               |               |

#### **GASTROPODA** (snails, slugs, and abalones)

| Scientific Name              | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------------|----------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Ammonitella<br>yatesii       | tight coin<br>(=Yates' snail)    |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Ancotrema<br>voyanum         | hooded<br>lancetooth             |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Assiminea infima             | Badwater snail                   |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Binneya notabilis            | Santa Barbara shelled slug       |          | G1             | S1            | None | None | IUCN:DD         | Yes               |               |
| Colligyrus<br>convexus       | canary<br>duskysnail             |          | G1G2           | S2            | None | None |                 | Yes               |               |
| Eremarionta immaculata       | white<br>desertsnail             |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Eremarionta<br>millepalmarum | Thousand<br>Palms<br>desertsnail |          | G1             | S1            | None | None | IUCN:VU         | No                |               |

January 5, 2023 Page 1 of 116

| Scientific Name                     | Common Name                           | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|-------------------------------------|---------------------------------------|----------|----------------|---------------|------------|------|-------------------|-------------------|---------------|
| Eremarionta<br>morongoana           | Morongo<br>(=Colorado)<br>desertsnail |          | G1G3           | S1            | None       | None | IUCN:NT           | Yes               |               |
| Eremarionta rowelli bakerensis      | Baker's<br>desertsnail                |          | G3G4T1         | S1            | None       | None | IUCN:DD           | Yes               |               |
| Eremarionta rowelli mccoiana        | California Mccoy<br>snail             |          | G3G4T1         | S1            | None       | None | IUCN:DD           | Yes               |               |
| Fluminicola<br>seminalis            | nugget<br>pebblesnail                 |          | G2             | S2            | None       | None | IUCN:DD<br>USFS:S | Yes               |               |
| Glyptostoma<br>gabrielense          | San Gabriel chestnut                  |          | G2             | S2            | None       | None |                   | Yes               |               |
| Haliotis corrugata                  | pink abalone                          |          | G3?            | S2?           | None       | None | IUCN:CR           | No                |               |
| Haliotis<br>cracherodii             | black abalone                         |          | G3             | S2            | Endangered | None | IUCN:CR           | Yes               |               |
| Haliotis fulgens                    | green abalone                         |          | G3G4           | S2            | None       | None | IUCN:CR           | No                |               |
| Haliotis<br>kamtschatkana           | pinto abalone                         |          | G3G4           | S2            | None       | None | IUCN:EN           | No                |               |
| Haliotis sorenseni                  | white abalone                         |          | G1             | S2            | Endangered | None | IUCN:CR           | No                |               |
| Haplotrema<br>catalinense           | Santa Catalina lancetooth             |          | G1             | S1            | None       | None |                   | Yes               |               |
| Haplotrema<br>duranti               | ribbed<br>lancetooth                  |          | G1G2           | S1S2          | None       | None |                   | Yes               |               |
| Helisoma<br>newberryi               | Great Basin rams-horn                 |          | G1             | S1S2          | None       | None | USFS:S            | Yes               |               |
| Helminthoglypta<br>allynsmithi      | Merced Canyon shoulderband            |          | G1             | S1            | None       | None | IUCN:VU           | Yes               |               |
| Helminthoglypta<br>arrosa monticola | mountain<br>shoulderband              |          | G2G3T1         | S1            | None       | None |                   | Yes               |               |

January 5, 2023 Page 2 of 116

| Scientific Name                               | Common Name                             | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------------|-----------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Helminthoglypta<br>arrosa pomoensis           | Pomo bronze shoulderband                |          | G2G3T1         | S1            | None | None | IUCN:DD         | Yes               |               |
| Helminthoglypta<br>ayresiana<br>sanctaecrucis | Ayer's snail                            |          | G1G2T1T2       | S1S2          | None | None |                 | Yes               |               |
| Helminthoglypta<br>callistoderma              | Kern<br>shoulderband                    |          | G1             | S1            | None | None | IUCN:EN         | Yes               |               |
| Helminthoglypta<br>coelata                    | mesa<br>shoulderband                    |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Helminthoglypta concolor                      | whitefir<br>shoulderband                |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Helminthoglypta<br>fontiphila                 | Soledad<br>shoulderband                 |          | G1             | S1            | None | None |                 | Yes               |               |
| Helminthoglypta<br>greggi                     | Mohave<br>shoulderband                  |          | G2             | S2            | None | None |                 | Yes               |               |
| Helminthoglypta<br>hertleini                  | Oregon<br>shoulderband                  |          | G3Q            | S1S2          | None | None |                 | Yes               |               |
| Helminthoglypta<br>milleri                    | peak<br>shoulderband                    |          | G1             | S1            | None | None |                 | Yes               |               |
| Helminthoglypta<br>mohaveana                  | Victorville shoulderband                |          | G1             | S1            | None | None | IUCN:NT         | Yes               |               |
| Helminthoglypta<br>nickliniana awania         | Peninsula coast range shoulderband      |          | G3T1           | S1            | None | None | IUCN:DD         | Yes               |               |
| Helminthoglypta<br>nickliniana<br>bridgesi    | Bridges' coast<br>range<br>shoulderband |          | G3T1           | S1S2          | None | None | IUCN:DD         | Yes               |               |

January 5, 2023 Page 3 of 116

| Scientific Name                             | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|---------------------------------------------|-------------------------------|----------|----------------|---------------|------------|------|-------------------|-------------------|---------------|
| Helminthoglypta<br>sequoicola<br>consors    | redwood<br>shoulderband       |          | G2T1           | S1            | None       | None | IUCN:DD           | Yes               |               |
| Helminthoglypta<br>stiversiana<br>williamsi | Williams' bronze shoulderband |          | G1G2T1         | S1            | None       | None | IUCN:DD           | Yes               |               |
| Helminthoglypta<br>talmadgei                | Trinity shoulderband          |          | G2             | S2            | None       | None |                   | Yes               |               |
| Helminthoglypta<br>taylori                  | westfork<br>shoulderband      |          | G1             | S1            | None       | None |                   | Yes               |               |
| Helminthoglypta<br>traskii<br>pacoimensis   | Pacoima<br>shoulderband       |          | G1G2T1         | S1            | None       | None |                   | Yes               |               |
| Helminthoglypta<br>traskii traskii          | Trask shoulderband            |          | G1G2T1         | S1            | None       | None |                   | Yes               |               |
| Helminthoglypta<br>uvasana                  | Grapevine shoulderband        |          | G1             | S1            | None       | None |                   | Yes               |               |
| Helminthoglypta<br>vasquezi                 | Vasquez<br>shoulderband       |          | G1             | S1            | None       | None |                   | Yes               |               |
| Helminthoglypta<br>walkeriana               | Morro<br>shoulderband         |          | G1             | S2            | Threatened | None | IUCN:CR           | Yes               |               |
| Herpeteros<br>angelus                       | Soledad<br>desertsnail        |          | G1             | S1            | None       | None |                   | No                |               |
| Hesperarion<br>plumbeus                     | leaden slug                   |          | G1             | S1            | None       | None |                   | Yes               |               |
| Ipnobius robustus                           | robust tryonia                |          | G1G2           | S1            | None       | None |                   | Yes               |               |
| Juga acutifilosa                            | topaz juga                    |          | G2             | S2            | None       | None | IUCN:NT<br>USFS:S | Yes               |               |
| Juga chacei                                 | Chace juga                    |          | G1             | S1            | None       | None | USFS:S            | Yes               |               |

January 5, 2023 Page 4 of 116

| Scientific Name             | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-----------------------------|----------|----------------|---------------|------|------|-------------------|-------------------|---------------|
| Juga occata                 | scalloped juga              |          | G1Q            | S1            | None | None | IUCN:EN<br>USFS:S | Yes               |               |
| Juga orickensis             | redwood juga                |          | G2             | S1S2          | None | None |                   | Yes               |               |
| Lanx alta                   | highcap lanx                |          | G2G3           | S3            | None | None |                   | Yes               |               |
| Lanx patelloides            | kneecap lanx                |          | G2?            | S2            | None | None | USFS:S            | Yes               |               |
| Littorina<br>subrotundata   | Newcomb's littorine snail   |          | G5             | S1S2          | None | None |                   | No                |               |
| Megomphix<br>californicus   | Natural Bridge<br>megomphix |          | G1G2           | S1S2          | None | None |                   | Yes               |               |
| Micrarionta facta           | Santa Barbara islandsnail   |          | G1G2           | S1S2          | None | None | IUCN:VU           | Yes               |               |
| Micrarionta feralis         | San Nicolas islandsnail     |          | G1             | S1            | None | None | IUCN:CR           | Yes               |               |
| Micrarionta gabbii          | San Clemente islandsnail    |          | G1             | S1            | None | None | IUCN:VU           | Yes               |               |
| Micrarionta<br>opuntia      | pricklypear<br>islandsnail  |          | G1             | S1            | None | None | IUCN:VU           | Yes               |               |
| Monadenia<br>callipeplus    | downy sideband              |          | G1?            | S1S2          | None | None |                   | Yes               |               |
| Monadenia<br>chaceana       | Siskiyou<br>shoulderband    |          | G2G3           | S2            | None | None |                   | Yes               |               |
| Monadenia<br>churchi        | Klamath<br>sideband         |          | G2G3           | S2            | None | None |                   | Yes               |               |
| Monadenia<br>circumcarinata | keeled sideband             |          | G3             | S3            | None | None | BLM:S<br>IUCN:VU  | Yes               |               |
| Monadenia<br>cristulata     | crested<br>sideband         |          | G1?            | S1S2          | None | None |                   | Yes               |               |

January 5, 2023 Page 5 of 116

| Scientific Name                         | Common Name                     | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status  | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------|---------------------------------|----------|----------------|---------------|------|------------|------------------|-------------------|---------------|
| Monadenia fidelis<br>leonina            | A terrestrial snail             |          | G4G5T1T2       | S1S2          | None | None       |                  | Yes               |               |
| Monadenia fidelis<br>pronotis           | rocky coast<br>Pacific sideband |          | G4G5T1         | S1            | None | None       | IUCN:DD          | Yes               |               |
| Monadenia<br>infumata<br>ochromphalus   | yellow-based<br>sideband        |          | G2T1           | S1            | None | None       |                  | Yes               |               |
| Monadenia<br>infumata setosa            | Trinity bristle snail           |          | G2T2           | S2            | None | Threatened | IUCN:VU          | Yes               |               |
| Monadenia<br>marmarotis                 | marble sideband                 |          | G1             | S1            | None | None       |                  | Yes               |               |
| Monadenia<br>mormonum<br>buttoni        | Button's Sierra<br>sideband     |          | G2T1           | S1S2          | None | None       | IUCN:DD          | Yes               |               |
| Monadenia<br>mormonum<br>hirsuta        | hirsute Sierra<br>sideband      |          | G2T1           | S1            | None | None       | BLM:S<br>IUCN:DD | Yes               |               |
| Monadenia<br>troglodytes<br>troglodytes | Shasta<br>sideband              |          | G1G2T1T2       | S1S2          | None | None       | USFS:S           | Yes               |               |
| Monadenia<br>troglodytes wintu          | Wintu sideband                  |          | G1G2T1T2       | S1S2          | None | None       | USFS:S           | Yes               |               |
| Monadenia<br>tuolumneana                | Tuolumne<br>sideband            |          | G1             | S1            | None | None       | BLM:S            | Yes               |               |
| Monadenia<br>yosemitensis               | Yosemite sideband               |          | G1             | S1S2          | None | None       |                  | Yes               |               |
| Noyo intersessa                         | Ten Mile shoulderband           |          | G2             | S2            | None | None       |                  | Yes               |               |

January 5, 2023 Page 6 of 116

| Scientific Name           | Common Name                                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|---------------------------|-----------------------------------------------|----------|----------------|---------------|------|------|-------------------|-------------------|---------------|
| Pomatiopsis<br>binneyi    | robust walker                                 |          | G1             | S1            | None | None |                   | Yes               |               |
| Pomatiopsis californica   | Pacific walker                                |          | G1             | S1            | None | None | IUCN:DD           | Yes               |               |
| Pomatiopsis<br>chacei     | marsh walker                                  |          | G1             | S2            | None | None |                   | Yes               |               |
| Pristiloma<br>shepardae   | Shepard's snail                               |          | G1             | S1            | None | None |                   | Yes               |               |
| Pristinicola<br>hemphilli | pristine pyrg                                 |          | G3             | S1            | None | None | IUCN:DD<br>USFS:S | Yes               |               |
| Prophysaon sp. 1          | Klamath<br>taildropper                        |          | G2             | S3            | None | None |                   | Yes               | Yes           |
| Punctum hannai            | Trinity Spot                                  |          | G1G2           | S1S2          | None | None |                   | Yes               |               |
| Pyrgulopsis<br>aardahli   | Benton Valley<br>(=Aahrdahl's)<br>springsnail |          | G1             | S1            | None | None |                   | Yes               |               |
| Pyrgulopsis<br>archimedis | Archimedes pyrg                               |          | G1G2           | S1S2          | None | None |                   | Yes               |               |
| Pyrgulopsis<br>cinerana   | Ash Valley pyrg                               |          | G1G2           | S1S2          | None | None |                   | Yes               |               |
| Pyrgulopsis<br>diablensis | Diablo Range<br>pyrg                          |          | G1             | S1            | None | None | IUCN:VU           | Yes               |               |
| Pyrgulopsis<br>eremica    | Smoke Creek pyrg                              |          | G2             | S2            | None | None |                   | Yes               |               |
| Pyrgulopsis<br>falciglans | Likely pyrg                                   |          | G1             | S1            | None | None |                   | Yes               |               |
| Pyrgulopsis gibba         | Surprise Valley pyrg                          |          | G3             | S1S2          | None | None |                   | Yes               |               |

January 5, 2023 Page 7 of 116

| Scientific Name            | Common Name                               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|----------------------------|-------------------------------------------|----------|----------------|---------------|------|------|-------------------|-------------------|---------------|
| Pyrgulopsis<br>greggi      | Kern River pyrg                           |          | G1             | S1            | None | None | IUCN:VU           | Yes               |               |
| Pyrgulopsis<br>lasseni     | Willow Creek<br>pyrg                      |          | G1G2           | S1S2          | None | None | USFS:S            | Yes               |               |
| Pyrgulopsis<br>longae      | Long Valley pyrg                          |          | G1             | S1            | None | None |                   | Yes               |               |
| Pyrgulopsis owensensis     | Owens Valley springsnail                  |          | G1G2           | S1S2          | None | None | USFS:S            | Yes               |               |
| Pyrgulopsis<br>perturbata  | Fish Slough springsnail                   |          | G1             | S1            | None | None |                   | Yes               |               |
| Pyrgulopsis<br>rupinicola  | Sucker Springs pyrg                       |          | G1             | S1            | None | None |                   | Yes               |               |
| Pyrgulopsis taylori        | San Luis Obispo<br>pyrg                   |          | G1             | S1            | None | None |                   | Yes               |               |
| Pyrgulopsis<br>ventricosa  | Clear Lake pyrg                           |          | G1             | S1            | None | None | IUCN:CR           | Yes               |               |
| Pyrgulopsis wongi          | Wong's<br>springsnail                     |          | G2             | S2            | None | None | IUCN:LC<br>USFS:S | Yes               |               |
| Radiocentrum<br>avalonense | Catalina<br>mountainsnail                 |          | G1             | S1            | None | None | IUCN:CR           | Yes               |               |
| Rothelix<br>warnerfontis   | Warner Springs shoulderband               |          | G1             | S1            | None | None | USFS:S            | Yes               |               |
| Sterkia<br>clementina      | San Clemente<br>Island blunt-top<br>snail |          | G1             | S1S2          | None | None | IUCN:NT           | Yes               |               |
| Trilobopsis roperi         | Shasta<br>chaparral                       |          | G2             | S1            | None | None | USFS:S            | Yes               |               |
| Trilobopsis<br>tehamana    | Tehama<br>chaparral                       |          | G2             | S1            | None | None | USFS:S            | Yes               |               |

January 5, 2023 Page 8 of 116

| Scientific Name           | Common Name                                              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------|----------------------------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Tryonia imitator          | mimic tryonia<br>(=California<br>brackishwater<br>snail) |          | G2             | S2            | None | None | IUCN:DD         | Yes               |               |
| Tryonia margae            | Grapevine<br>Springs<br>elongate tryonia                 |          | G1             | S1            | None | None |                 | Yes               |               |
| Tryonia rowlandsi         | Grapevine<br>Springs squat<br>tryonia                    |          | G1             | S1            | None | None |                 | Yes               |               |
| Vespericola<br>karokorum  | Karok hesperian                                          |          | G2             | S2            | None | None | IUCN:DD         | Yes               |               |
| Vespericola<br>marinensis | Marin hesperian                                          |          | G2             | S2            | None | None |                 | Yes               |               |
| Vespericola<br>pressleyi  | Big Bar<br>hesperian                                     |          | G1             | S1            | None | None | USFS:S          | Yes               |               |
| Vespericola scotti        | Benson Gulch<br>hesperian                                |          | G1             | S1            | None | None |                 | Yes               |               |
| Vespericola<br>shasta     | Shasta<br>hesperian                                      |          | G3             | S3            | None | None | USFS:S          | Yes               |               |
| Vespericola<br>sierranus  | Siskiyou<br>hesperian                                    |          | G3             | S1S2          | None | None |                 | Yes               |               |
| Xerarionta<br>intercisa   | horseshoe snail                                          |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Xerarionta<br>redimita    | wreathed cactussnail                                     |          | G1G2           | S1            | None | None | IUCN:VU         | Yes               |               |
| Xerarionta tryoni         | Bicolor cactussnail                                      |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |

January 5, 2023 Page 9 of 116

# **ARACHNIDA** (spiders and relatives)

| Scientific Name              | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------------|------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Aphrastochthonius<br>grubbsi | Grubbs' Cave pseudoscorpion  |          | G1G2           | S1            | None | None |                 | Yes               |               |
| Aphrastochthonius similis    | Carlow's Cave pseudoscorpion |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Archeolarca aalbui           | Aalbu's Cave pseudoscorpion  |          | G1G2           | S1            | None | None |                 | Yes               |               |
| Banksula<br>californica      | Alabaster Cave harvestman    |          | GH             | SH            | None | None |                 | Yes               |               |
| Banksula galilei             | Galile's cave harvestman     |          | G1             | S1            | None | None |                 | Yes               |               |
| Banksula grubbsi             | Grubbs' cave harvestman      |          | G1             | S1            | None | None |                 | Yes               |               |
| Banksula incredula           | incredible<br>harvestman     |          | G1             | S1            | None | None |                 | Yes               |               |
| Banksula<br>martinorum       | Martins' cave harvestman     |          | G1             | S1            | None | None |                 | Yes               |               |
| Banksula melones             | Melones Cave harvestman      |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Banksula rudolphi            | Rudolph's cave harvestman    |          | G1             | S1            | None | None |                 | Yes               |               |
| Banksula tuolumne            | Tuolumne cave harvestman     |          | G1             | S1            | None | None |                 | Yes               |               |
| Banksula<br>tutankhamen      | King Tut Cave harvestman     |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina arida               | San Benito<br>harvestman     |          | G1             | S1            | None | None |                 | Yes               |               |

Page 10 of 116

| Scientific Name               | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-------------------------------|----------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Calicina breva                | Stanislaus<br>harvestman         |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina<br>cloughensis       | Clough Cave harvestman           |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina conifera             | Crane Flat harvestman            |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina diminua              | Marin blind harvestman           |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina<br>dimorphica        | Watts Valley harvestman          |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina macula               | marbled harvestman               |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina mesaensis            | Table Mountain harvestman        |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina minor                | Edgewood blind harvestman        |          | G1             | S1            | None | None |                 | Yes               |               |
| Calicina piedra               | Piedra harvestman                |          | G1             | S1            | None | None |                 | Yes               |               |
| Calileptoneta<br>briggsi      | Briggs' leptonetid spider        |          | G1             | S1            | None | None |                 | Yes               |               |
| Calileptoneta oasa            | Andreas Canyon leptonetid spider |          | G1             | S1            | None | None |                 | Yes               |               |
| Calileptoneta ubicki          | Ubick's leptonetid spider        |          | G1             | S1            | None | None |                 | Yes               |               |
| Calileptoneta wapiti          | Mendocino<br>leptonetid spider   |          | G1             | S1            | None | None |                 | Yes               |               |
| Fissilicreagris<br>imperialis | Empire Cave pseudoscorpion       |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Hubbardia idria               | Idria short-tailed whipscorpion  |          | G1             | S1            | None | None |                 | Yes               |               |

January 5, 2023 Page 11 of 116

| Scientific Name            | Common Name                                | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|--------------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Hubbardia<br>secoensis     | Arroyo Seco short-<br>tailed whipscorpion  |          | G1             | S1            | None | None |                 | Yes               |               |
| Hubbardia<br>shoshonensis  | Shoshone Cave whip-scorpion                |          | G1             | S1            | None | None | BLM:S           | Yes               | Yes           |
| Larca laceyi               | Lacey's Cave pseudoscorpion                |          | G1G2           | S1            | None | None |                 | Yes               |               |
| Meta dolloff               | Dolloff Cave spider                        |          | G3             | S3            | None | None | IUCN:VU         | Yes               |               |
| Microcina<br>edgewoodensis | Edgewood Park<br>micro-blind<br>harvestman |          | G1             | S1            | None | None |                 | Yes               |               |
| Microcina homi             | Hom's micro-blind harvestman               |          | G1             | S2            | None | None |                 | Yes               |               |
| Microcina jungi            | Jung's micro-blind harvestman              |          | G1             | S1            | None | None |                 | Yes               |               |
| Microcina leei             | Lee's micro-blind harvestman               |          | G1             | S1            | None | None |                 | Yes               |               |
| Microcina lumi             | Lum's micro-blind harvestman               |          | G1             | S1            | None | None |                 | Yes               |               |
| Microcina tiburona         | Tiburon micro-blind harvestman             |          | G2             | S2            | None | None |                 | Yes               |               |
| Neochthonius<br>imperialis | Empire Cave pseudoscorpion                 |          | G1             | S1            | None | None |                 | Yes               |               |
| Pseudogarypus<br>orpheus   | Music Hall Cave pseudoscorpion             |          | G1G2           | S1            | None | None |                 | Yes               |               |
| Socalchemmis<br>gertschi   | Gertsch's socalchemmis spider              |          | G1             | S1            | None | None |                 | Yes               |               |
| Socalchemmis<br>icenoglei  | Icenogle's socalchemmis spider             |          | G1             | S1            | None | None |                 | Yes               |               |

January 5, 2023 Page 12 of 116

| Scientific Name          | Common Name                         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------|-------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Socalchemmis<br>monterey | Monterey socalchemmis spider        |          | G1             | S1            | None | None |                 | Yes               |               |
| Talanites moodyae        | Moody's gnaphosid spider            |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Talanites ubicki         | Ubick's gnaphosid spider            |          | G1             | S1            | None | None |                 | Yes               |               |
| Telema sp.               | Santa Cruz telemid spider           |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Texella deserticola      | Whitewater Canyon harvestman        |          | G1             | S1            | None | None |                 | Yes               |               |
| Texella kokoweef         | Kokoweef Crystal<br>Cave harvestman |          | G1             | S1            | None | None |                 | Yes               |               |
| Texella shoshone         | Shoshone Cave harvestman            |          | G1             | S1            | None | None |                 | Yes               |               |

# CRUSTACEA, Order Anostraca (fairy shrimp)

| Scientific Name              | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------------|-----------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Artemia monica               | Mono Lake brine shrimp      |          | G3             | S3            | None       | None |                 | Yes               |               |
| Branchinecta campestris      | pocket pouch fairy shrimp   |          | G2             | S1            | None       | None |                 | Yes               |               |
| Branchinecta conservatio     | Conservancy fairy shrimp    |          | G2             | S2            | Endangered | None | IUCN:EN         | Yes               |               |
| Branchinecta<br>longiantenna | longhorn fairy shrimp       |          | G1             | S2            | Endangered | None | IUCN:EN         | Yes               |               |
| Branchinecta<br>lynchi       | vernal pool fairy<br>shrimp |          | G3             | S3            | Threatened | None | IUCN:VU         | Yes               |               |

January 5, 2023 Page 13 of 116

| Scientific Name                | Common Name                     | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------------|---------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Branchinecta<br>mesovallensis  | midvalley fairy<br>shrimp       |          | G2             | S2S3          | None       | None |                 | Yes               |               |
| Branchinecta<br>sandiegonensis | San Diego fairy<br>shrimp       |          | G2             | S2            | Endangered | None | IUCN:EN         | Yes               |               |
| Linderiella<br>occidentalis    | California linderiella          |          | G2G3           | S2S3          | None       | None | IUCN:NT         | Yes               |               |
| Linderiella<br>santarosae      | Santa Rosa Plateau fairy shrimp |          | G1G2           | S1            | None       | None |                 | Yes               |               |
| Streptocephalus woottoni       | Riverside fairy shrimp          |          | G1G2           | S2            | Endangered | None | IUCN:EN         | Yes               |               |

#### **CRUSTACEA**, Order Notostraca (tadpole shrimp)

| Scientific<br>Name    | Common Name                | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------|----------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Lepidurus<br>packardi | vernal pool tadpole shrimp |          | G4             | S3            | Endangered | None | IUCN:EN         | Yes               |               |

#### CRUSTACEA, Order Diplostraca (water fleas)

| Scientific Name      | Common Name      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------|------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Dumontia oregonensis | hairy water flea |          | G1G3           | S1            | None | None |                 | Yes               |               |

#### **CRUSTACEA**, Order Isopoda (isopods)

| Scientific Name          | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------|---------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Bowmanasellus sequoiae   | Sequoia cave isopod |          | G2             | S2            | None | None |                 | Yes               |               |
| Caecidotea<br>tomalensis | Tomales isopod      |          | G2             | S2S3          | None | None |                 | Yes               |               |

January 5, 2023 Page 14 of 116

| Scientific Name            | Common Name | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|-------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Calasellus<br>californicus | An isopod   |          | G2             | S2            | None | None |                 | Yes               |               |
| Calasellus longus          | An isopod   |          | G1             | S1            | None | None |                 | Yes               |               |

# **CRUSTACEA**, Order Amphipoda (amphipods)

| Scientific Name            | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|--------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Hyalella muerta            | Texas Spring amphipod    |          | G1             | S1            | None | None |                 | Yes               | Yes           |
| Hyalella sandra            | Death Valley amphipod    |          | G1             | S1            | None | None |                 | Yes               | Yes           |
| Stygobromus<br>cherylae    | Barr's amphipod          |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>cowani      | Cowan's amphipod         |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>gallawayae  | Gallaway's<br>amphipod   |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>gradyi      | Grady's Cave<br>amphipod |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Stygobromus<br>grahami     | Graham's Cave amphipod   |          | G2             | S2            | None | None |                 | Yes               |               |
| Stygobromus<br>harai       | Hara's Cave<br>amphipod  |          | G1G2           | S1            | None | None | IUCN:VU         | Yes               |               |
| Stygobromus<br>hyporheicus | hyporheic amphipod       |          | G1             | SX            | None | None |                 | Yes               |               |
| Stygobromus<br>imperialis  | Empire Cave amphipod     |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>lacicolus   | Lake Tahoe<br>amphipod   |          | G1             | S1            | None | None |                 | Yes               |               |

January 5, 2023 Page 15 of 116

| Scientific Name           | Common Name               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------|---------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Stygobromus<br>mackenziei | Mackenzie's Cave amphipod |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| Stygobromus<br>myersae    | Myer's amphipod           |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Stygobromus<br>mysticus   | Secret Cave amphipod      |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>rudolphi   | Rudolph's amphipod        |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>sheldoni   | Sheldon's amphipod        |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>sierrensis | Sierra amphipod           |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>tahoensis  | Lake Tahoe stygobromid    |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>trinus     | Trinity County amphipod   |          | G1             | S1            | None | None |                 | Yes               |               |
| Stygobromus<br>wengerorum | Wengerors' Cave amphipod  |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |

# CRUSTACEA, Order Decapoda (crayfish and shrimp)

| Scientific<br>Name                          | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------------------------|------------------------------|----------|----------------|---------------|------------|------------|-----------------|-------------------|---------------|
| Pacifastacus fortis                         | Shasta crayfish              |          | G1             | S1            | Endangered | Endangered | IUCN:CR         | Yes               |               |
| Pacifastacus<br>leniusculus<br>klamathensis | Klamath crayfish             |          | G5T5           | S3            | None       | None       |                 | No                |               |
| Syncaris pacifica                           | California freshwater shrimp |          | G2             | S2            | Endangered | Endangered | IUCN:EN         | Yes               |               |

January 5, 2023 Page 16 of 116

#### **INSECTA**, Order Odonata (dragonflies and damselflies)

| Scientific<br>Name | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------|----------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Ischnura<br>gemina | San Francisco forktail damselfly |          | G2             | S2            | None | None | IUCN:EN         | Yes               |               |

#### **INSECTA**, Order Plecoptera (stoneflies)

| Scientific Name           | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------|-----------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Capnia lacustra           | Lake Tahoe benthic stonefly |          | G1             | S1            | None | None |                 | Yes               |               |
| Cosumnoperla<br>hypocrena | Cosumnes stripetail         |          | G2             | S2            | None | None |                 | Yes               |               |

#### INSECTA, Order Orthoptera (grasshoppers, katydids, and crickets)

| Scientific Name            | Common Name                        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Aglaothorax<br>longipennis | Santa Monica<br>shieldback katydid |          | G1G2           | S1S2          | None | None | IUCN:CR         | Yes               |               |
| Ammopelmatus kelsoensis    | Kelso jerusalem cricket            |          | G1G2           | S1S2          | None | None | IUCN:VU         | Yes               |               |
| Ammopelmatus<br>muwu       | Point Conception jerusalem cricket |          | G1             | S1            | None | None | IUCN:VU         | Yes               |               |
| ldiostatus<br>kathleenae   | Pinnacles shieldback katydid       |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| ldiostatus<br>middlekauffi | Middlekauff's shieldback katydid   |          | G1G2           | S1            | None | None | IUCN:CR         | Yes               |               |
| Macrobaenetes algodonensis | Algodones sand treader cricket     |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Macrobaenetes kelsoensis   | Kelso giant sand treader cricket   |          | G2             | S2            | None | None | IUCN:VU         | Yes               |               |

January 5, 2023 Page 17 of 116

| Scientific Name               | Common Name                          | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-------------------------------|--------------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Macrobaenetes<br>valgum       | Coachella giant sand treader cricket |          | G1G2           | S2            | None       | None | IUCN:VU         | Yes               |               |
| Pristoceuthophilus sp. 1      | Samwell Cave cricket                 |          | G1G3           | S1S3          | None       | None | IUCN:VU         | Yes               |               |
| Psychomastax<br>deserticola   | desert monkey<br>grasshopper         |          | G1G2           | S1            | None       | None | IUCN:VU         | Yes               |               |
| Stenopelmatus cahuilaensis    | Coachella Valley jerusalem cricket   |          | G1G2           | S2            | None       | None | IUCN:VU         | Yes               |               |
| Tetrix sierrana               | Sierra pygmy<br>grasshopper          |          | G1G2           | S1            | None       | None | IUCN:VU         | Yes               |               |
| Trimerotropis<br>infantilis   | Zayante band-<br>winged grasshopper  |          | G1             | S1            | Endangered | None | IUCN:EN         | Yes               |               |
| Trimerotropis occidentiloides | Santa Monica<br>grasshopper          |          | G1G2           | S2            | None       | None | IUCN:EN         | Yes               |               |
| Trimerotropis occulens        | Lompoc grasshopper                   |          | G1G2           | S1S2          | None       | None | IUCN:EN         | Yes               |               |

# **INSECTA**, Order Hemiptera (true bugs)

| Scientific<br>Name       | Common Name                        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------|------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Ambrysus<br>funebris     | Nevares Spring naucorid bug        |          | G1             | S1            | None | None |                 | Yes               |               |
| Belostoma<br>saratogae   | Saratoga Springs<br>belostoman bug |          | G1             | S1            | None | None |                 | Yes               |               |
| Oravelia pege            | Dry Creek cliff strider bug        |          | G1             | S1            | None | None |                 | Yes               |               |
| Pelocoris<br>biimpressus | Amargosa naucorid bug              |          | G1G3           | S1S2          | None | None |                 | Yes               |               |

January 5, 2023 Page 18 of 116

| Scientific<br>Name | Common Name                | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------|----------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Saldula usingeri   | Wilbur Springs<br>shorebug |          | G1             | S2            | None | None |                 | Yes               |               |

### **INSECTA**, Order Neuroptera (lacewings)

| Scientific<br>Name | Common Name                                  | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------|----------------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Oliarces<br>clara  | cheeseweed owlfly (cheeseweed moth lacewing) |          | G1G3           | S2            | None | None |                 | Yes               |               |

## **INSECTA**, Order Coleoptera (beetles)

| Scientific Name          | Common Name                       | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status  | Records in CNDDB? | End<br>Notes? |
|--------------------------|-----------------------------------|----------|----------------|---------------|------|------|------------------|-------------------|---------------|
| Aegialia concinna        | Ciervo aegilian<br>scarab beetle  |          | G1             | S1            | None | None | BLM:S<br>IUCN:VU | Yes               |               |
| Agabus rumppi            | Death Valley agabus diving beetle |          | G1G3           | S1            | None | None |                  | Yes               |               |
| Agrilus harenus          | Harenus jewel beetle              |          | G1G2           | S1S2          | None | None |                  | Yes               |               |
| Anomala carlsoni         | Carlson's dune beetle             |          | G1             | S1            | None | None |                  | Yes               |               |
| Anomala<br>hardyorum     | Hardy's dune beetle               |          | G1             | S1            | None | None |                  | Yes               |               |
| Anthicus<br>antiochensis | Antioch Dunes anthicid beetle     |          | G1             | S3            | None | None |                  | Yes               |               |
| Anthicus<br>sacramento   | Sacramento anthicid beetle        |          | G1             | S4            | None | None | IUCN:EN          | Yes               |               |
| Atractelmis<br>wawona    | Wawona riffle beetle              |          | G3             | S1S2          | None | None |                  | Yes               |               |

Page 19 of 116

| Scientific Name                            | Common Name                                  | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status  | Records in CNDDB? | End<br>Notes? |
|--------------------------------------------|----------------------------------------------|----------|----------------|---------------|------------|------|------------------|-------------------|---------------|
| Chaetarthria leechi                        | Leech's chaetarthrian water scavenger beetle |          | G1?            | S1            | None       | None |                  | Yes               |               |
| Cicindela hirticollis<br>abrupta           | Sacramento Valley tiger beetle               |          | G5TH           | SH            | None       | None |                  | Yes               |               |
| Cicindela hirticollis<br>gravida           | sandy beach tiger<br>beetle                  |          | G5T2           | S2            | None       | None |                  | Yes               |               |
| Cicindela<br>latesignata                   | western beach tiger<br>beetle                |          | G2G3           | S1            | None       | None |                  | Yes               |               |
| Cicindela ohlone                           | Ohlone tiger beetle                          |          | G1             | S1            | Endangered | None |                  | Yes               |               |
| Cicindela senilis<br>frosti                | senile tiger beetle                          |          | G2G3T1T3       | S1            | None       | None |                  | Yes               |               |
| Cicindela<br>tranquebarica<br>joaquinensis | San Joaquin tiger<br>beetle                  |          | G5T1           | S1            | None       | None |                  | Yes               |               |
| Cicindela<br>tranquebarica<br>viridissima  | greenest tiger beetle                        |          | G5T1           | S1            | None       | None |                  | Yes               |               |
| Coelus globosus                            | globose dune beetle                          |          | G1G2           | S1S2          | None       | None | IUCN:VU          | Yes               |               |
| Coelus gracilis                            | San Joaquin dune beetle                      |          | G1             | S1            | None       | None | BLM:S<br>IUCN:VU | Yes               |               |
| Coenonycha<br>clementina                   | San Clemente Island coenonycha beetle        |          | G1G2           | S1S2          | None       | None |                  | Yes               |               |
| Cyclocephala<br>wandae                     | Wandae dune beetle                           |          | G1G2           | S1S2          | None       | None |                  | Yes               |               |
| Deltaspis ivae                             | marsh-elder long-<br>horned beetle           |          | G1             | S1            | None       | None |                  | Yes               |               |

January 5, 2023 Page 20 of 116

| Scientific Name                         | Common Name                                | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------|--------------------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Desmocerus<br>californicus<br>dimorphus | valley elderberry<br>longhorn beetle       |          | G3T2T3         | S3            | Threatened | None |                 | Yes               |               |
| Dinacoma caseyi                         | Casey's June beetle                        |          | G1             | S1            | Endangered | None |                 | Yes               |               |
| Dubiraphia<br>brunnescens               | brownish<br>dubiraphian riffle<br>beetle   |          | G1             | S1            | None       | None |                 | Yes               |               |
| Dubiraphia<br>giulianii                 | Giuliani's<br>dubiraphian riffle<br>beetle |          | G1G3           | S1S3          | None       | None |                 | Yes               |               |
| Elaphrus viridis                        | Delta green ground beetle                  |          | G1             | S1            | Threatened | None | IUCN:CR         | Yes               |               |
| Glaresis arenata                        | Kelso Dunes scarab glaresis beetle         |          | G2             | S2            | None       | None |                 | Yes               |               |
| Habroscelimorpha<br>gabbii              | western tidal-flat<br>tiger beetle         |          | G2G4           | S1            | None       | None |                 | Yes               |               |
| Hydrochara<br>rickseckeri               | Ricksecker's water scavenger beetle        |          | G2?            | S2?           | None       | None |                 | Yes               |               |
| Hydroporus leechi                       | Leech's skyline diving beetle              |          | G1?            | S2S3          | None       | None |                 | Yes               |               |
| Hydroporus<br>simplex                   | simple hydroporus diving beetle            |          | G1?            | S1S3          | None       | None |                 | Yes               |               |
| Hygrotus curvipes                       | curved-foot hygrotus diving beetle         |          | G1             | S2            | None       | None |                 | Yes               |               |
| Hygrotus fontinalis                     | travertine band-thigh diving beetle        |          | G1             | S1            | None       | None |                 | Yes               |               |
| Juniperella<br>mirabilis                | juniper metallic<br>wood-boring beetle     |          | G1             | S1            | None       | None |                 | Yes               |               |

Page 21 of 116

| Scientific Name                 | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------------|----------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Lepismadora<br>algodones        | Algodones sand jewel beetle      |          | G1             | S1            | None | None |                 | Yes               |               |
| Lichnanthe<br>albipilosa        | white sand bear scarab beetle    |          | G1             | S1            | None | None |                 | Yes               |               |
| Lichnanthe ursina               | bumblebee scarab<br>beetle       |          | G2             | S2            | None | None |                 | Yes               |               |
| Lytta hoppingi                  | Hopping's blister beetle         |          | G1G2           | S2            | None | None |                 | Yes               |               |
| Lytta insperata                 | Mojave Desert blister beetle     |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Lytta moesta                    | moestan blister<br>beetle        |          | G2             | S2            | None | None |                 | Yes               |               |
| Lytta molesta                   | molestan blister<br>beetle       |          | G2             | S2            | None | None |                 | Yes               |               |
| Lytta morrisoni                 | Morrison's blister beetle        |          | G1G2           | S2            | None | None |                 | Yes               |               |
| Microcylloepus<br>formicoideus  | Furnace Creek riffle beetle      |          | G1             | S1            | None | None |                 | Yes               |               |
| Miloderes nelsoni               | Nelson's miloderes<br>weevil     |          | G2             | S2            | None | None |                 | Yes               |               |
| Nebria darlingtoni              | South Forks ground beetle        |          | G1             | S1            | None | None |                 | Yes               |               |
| Nebria gebleri<br>siskiyouensis | Siskiyou ground beetle           |          | G4G5T4         | S1S2          | None | None |                 | Yes               |               |
| Nebria sahlbergii<br>triad      | Trinity Alps ground beetle       |          | G5T1           | S1            | None | None |                 | Yes               |               |
| Ochthebius<br>crassalus         | wing shoulder minute moss beetle |          | G1G3           | S1S3          | None | None |                 | No                |               |

January 5, 2023 Page 22 of 116

| Scientific Name           | Common Name                               | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------|-------------------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Ochthebius<br>recticulus  | Wilbur Springs<br>minute moss beetle      |          | G1             | S1            | None       | None |                 | Yes               |               |
| Onychobaris<br>langei     | Lange's El Segundo<br>Dune weevil         |          | G1             | S1            | None       | None |                 | Yes               |               |
| Optioservus canus         | Pinnacles optioservus riffle beetle       |          | G2             | S1            | None       | None |                 | Yes               |               |
| Palaeoxenus<br>dohrni     | Dohrn's elegant eucnemid beetle           |          | G3?            | S3?           | None       | None |                 | Yes               |               |
| Polyphylla<br>anteronivea | Saline Valley snow-<br>front June beetle  |          | G1             | S2            | None       | None |                 | Yes               |               |
| Polyphylla barbata        | Mount Hermon<br>(=barbate) June<br>beetle |          | G1             | S2            | Endangered | None |                 | Yes               |               |
| Polyphylla erratica       | Death Valley June beetle                  |          | G1G2           | S1S2          | None       | None |                 | Yes               |               |
| Polyphylla<br>morroensis  | Morro Bay June beetle                     |          | G1             | S1            | None       | None |                 | Yes               |               |
| Polyphylla nubila         | Atascadero June beetle                    |          | G1             | S1            | None       | None |                 | Yes               |               |
| Prasinalia<br>imperialis  | Algodones white wax jewel beetle          |          | G1G2           | S1S2          | None       | None |                 | No                |               |
| Pseudocotalpa<br>andrewsi | Andrew's dune scarab beetle               |          | G1             | S1            | None       | None |                 | Yes               |               |
| Scaphinotus<br>behrensi   | Behrens' snail-eating beetle              |          | G2G4           | S2S4          | None       | None |                 | Yes               |               |
| Trachykele<br>hartmani    | serpentine cypress wood-boring beetle     |          | G1             | S1            | None       | None |                 | Yes               |               |

January 5, 2023 Page 23 of 116

| Scientific Name                   | Common Name                            | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|----------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Trichinorhipis<br>knulli          | Knull's metallic wood-boring beetle    |          | G1             | S1            | None | None |                 | Yes               |               |
| Trigonoscuta<br>brunnotesselata   | brown tassel trigonoscuta weevil       |          | G1G2           | S1            | None | None |                 | Yes               |               |
| Trigonoscuta<br>dorothea dorothea | Dorothy's El<br>Segundo Dune<br>weevil |          | G1T1           | S1            | None | None |                 | Yes               |               |
| Trigonoscuta rothi algodones      | Algodones dune weevil                  |          | G1G2T1T2       | S1S2          | None | None |                 | No                |               |
| Trigonoscuta rothi imperialis     | Imperial dune weevil                   |          | G1G2T1T2       | S1S2          | None | None |                 | No                |               |
| Trigonoscuta rothi punctata       | Punctate dune weevil                   |          | G1G2T1T2       | S1S2          | None | None |                 | No                |               |
| Trigonoscuta rothi rothi          | Roth's dune weevil                     |          | G1G2T1T2       | S1S2          | None | None |                 | No                |               |
| Trigonoscuta sp.                  | Doyen's trigonoscuta dune weevil       |          | G1Q            | S1            | None | None |                 | Yes               | Yes           |
| Trigonoscuta<br>stantoni          | Santa Cruz Island shore weevil         |          | G1             | S1            | None | None |                 | Yes               |               |
| Vandykea<br>tuberculata           | serpentine cypress long-horned beetle  |          | G1             | S2            | None | None |                 | Yes               |               |

# **INSECTA**, Order Mecoptera (scorpionflies)

| Scientific<br>Name   | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------|-------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Orobittacus obscurus | gold rush hanging scorpionfly |          | G1             | S1            | None | None |                 | Yes               |               |

January 5, 2023 Page 24 of 116

# **INSECTA**, Order Diptera (flies)

| Scientific Name                           | Common Name                                | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|--------------------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Ablautus<br>schlingeri                    | Oso Flaco robber fly                       |          | G1             | S2            | None       | None |                 | Yes               |               |
| Apiocera warneri                          | Glamis sand fly                            |          | G1G2           | S1S2          | None       | None |                 | Yes               |               |
| Brennania belkini                         | Belkin's dune tabanid fly                  |          | G1G2           | S1S2          | None       | None | IUCN:VU         | Yes               |               |
| Cophura hurdi                             | Antioch cophuran robberfly                 |          | GX             | SX            | None       | None |                 | No                |               |
| Efferia antiochi                          | Antioch efferian robberfly                 |          | G1G2           | S1S2          | None       | None |                 | Yes               |               |
| Efferia<br>macroxipha                     | Glamis robberfly                           |          | G1G2           | S1S2          | None       | None |                 | Yes               |               |
| Metapogon hurdi                           | Hurd's metapogon robberfly                 |          | G1G2           | S1S2          | None       | None |                 | Yes               |               |
| Paracoenia calida                         | Wilbur Springs shore fly                   |          | G1             | S1            | None       | None |                 | Yes               |               |
| Rhaphiomidas<br>terminatus<br>abdominalis | Delhi Sands flower-<br>loving fly          |          | G1T1           | S1            | Endangered | None |                 | Yes               |               |
| Rhaphiomidas<br>terminatus<br>terminatus  | El Segundo flower-<br>loving fly           |          | G1T1           | S1            | None       | None |                 | Yes               |               |
| Rhaphiomidas<br>trochilus                 | San Joaquin Valley giant flower-loving fly |          | G1             | S1            | None       | None |                 | Yes               |               |

January 5, 2023 Page 25 of 116

### INSECTA, Order Lepidoptera (butterflies and moths)

| Scientific Name                       | Common Name                                   | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|---------------------------------------|-----------------------------------------------|----------|----------------|---------------|------------|------|-------------------|-------------------|---------------|
| Adela oplerella                       | Opler's longhorn moth                         |          | G2             | S2            | None       | None |                   | Yes               |               |
| Apodemia mormo<br>langei              | Lange's metalmark butterfly                   |          | G5T1           | S1            | Endangered | None |                   | Yes               |               |
| Areniscythris<br>brachypteris         | Oso Flaco flightless moth                     |          | G1             | S2            | None       | None |                   | Yes               |               |
| Callophrys mossii<br>bayensis         | San Bruno elfin butterfly                     |          | G4T1           | S2            | Endangered | None |                   | Yes               |               |
| Callophrys mossii<br>hidakupa         | San Gabriel<br>Mountains elfin<br>butterfly   |          | G4T1T2         | S1S2          | None       | None | USFS:S            | Yes               |               |
| Callophrys mossii<br>marinensis       | Marin elfin butterfly                         |          | G4T1           | S1            | None       | None |                   | Yes               |               |
| Callophrys<br>sheridanii<br>comstocki | desert green<br>hairstreak                    |          | G3G4           | S1S2          | None       | None |                   | No                |               |
| Callophrys thornei                    | Thorne's hairstreak                           |          | G3G4T2         | S2            | None       | None | BLM:S             | Yes               | Yes           |
| Carterocephalus<br>palaemon magnus    | Sonoma arctic skipper                         |          | G5T5           | S1            | None       | None |                   | Yes               |               |
| Cercyonis pegala carsonensis          | Carson Valley wood nymph                      |          | G5T1T2         | S1S2          | None       | None |                   | No                |               |
| Chlosyne leanira<br>elegans           | Oso Flaco patch butterfly                     |          | G4G5T1T2       | S1S2          | None       | None |                   | Yes               |               |
| Coenonympha<br>tullia yontockett      | Yontocket satyr                               |          | G5T1T2         | S1            | None       | None |                   | Yes               |               |
| Danaus plexippus plexippus pop. 1     | monarch - California overwintering population |          | G4T1T2         | S2            | Candidate  | None | IUCN:EN<br>USFS:S | Yes               |               |

January 5, 2023 Page 26 of 116

| Scientific Name                              | Common Name                    | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------------------------|--------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Euchloe hyantis<br>andrewsi                  | Andrew's marble butterfly      |          | G4G5T1         | S1            | None       | None |                 | Yes               |               |
| Eucosma hennei                               | Henne's eucosman<br>moth       |          | G1             | S1            | None       | None |                 | Yes               |               |
| Eugnosta<br>busckana                         | Busck's gallmoth               |          | G1G3           | SH            | None       | None |                 | Yes               |               |
| Euphilotes<br>battoides allyni               | El Segundo blue butterfly      |          | G5T1           | S1            | Endangered | None |                 | Yes               |               |
| Euphilotes baueri                            | Bauer's dotted-blue            |          | G2             | S1S2          | None       | None | USFS:S          | No                |               |
| Euphilotes enoptes smithi                    | Smith's blue butterfly         |          | G5T1T2         | S2            | Endangered | None |                 | Yes               |               |
| Euphilotes glaucon comstocki                 | Comstock's blue butterfly      |          | G5T2           | S2            | None       | None |                 | Yes               |               |
| Euphilotes mojave                            | Mojave dotted-blue             |          | G2G3           | S1S2          | None       | None |                 | No                |               |
| Euphydryas editha<br>bayensis                | Bay checkerspot butterfly      |          | G5T1           | S1            | Threatened | None |                 | Yes               |               |
| Euphydryas editha<br>monoensis               | Mono checkerspot butterfly     |          | G5T2           | S1S2          | None       | None | USFS:S          | Yes               |               |
| Euphydryas editha<br>quino                   | quino checkerspot<br>butterfly |          | G5T1T2         | S1S2          | Endangered | None |                 | Yes               |               |
| Euphyes vestris<br>harbisoni                 | dun skipper                    |          | G5T1           | S1S2          | None       | None |                 | No                |               |
| Euproserpinus<br>euterpe                     | Kern primrose sphinx moth      |          | G1G2           | S1            | Threatened | None |                 | Yes               | Yes           |
| Glaucopsyche<br>lygdamus<br>palosverdesensis | Palos Verdes blue butterfly    |          | G5T1           | S1            | Endangered | None |                 | Yes               |               |

Page 27 of 116 January 5, 2023

| Scientific Name                     | Common Name                                | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|-------------------------------------|--------------------------------------------|----------|----------------|---------------|------------|------|-------------------|-------------------|---------------|
| Hesperia miriamae<br>Iongaevicola   | White Mountains skipper                    |          | G2G3T1         | S1            | None       | None |                   | Yes               |               |
| Hesperopsis<br>gracielae            | MacNeill's sootywing                       |          | G2G3           | S1S2          | None       | None |                   | No                |               |
| Icaricia icarioides<br>albihalos    | White Mountains icarioides blue butterfly  |          | G5T2T3         | S2?           | None       | None |                   | Yes               |               |
| Icaricia icarioides<br>missionensis | Mission blue butterfly                     |          | G5T1           | S2            | Endangered | None |                   | Yes               |               |
| Icaricia icarioides<br>moroensis    | Morro Bay blue butterfly                   |          | G5T2           | S2            | None       | None |                   | Yes               |               |
| lcaricia icarioides<br>parapheres   | Point Reyes blue butterfly                 |          | G5T1T2         | S1S2          | None       | None |                   | Yes               |               |
| lcaricia icarioides<br>pheres       | Pheres blue butterfly                      |          | G5TX           | SX            | None       | None |                   | Yes               |               |
| Icaricia saepiolus<br>albomontanus  | White Mountains saepiolus blue butterfly   |          | G5T2           | S1S2          | None       | None |                   | Yes               |               |
| Icaricia saepiolus<br>aureolus      | San Gabriel<br>Mountains blue<br>butterfly |          | G5T1           | S1            | None       | None | USFS:S            | Yes               |               |
| Lycaena hermes                      | Hermes copper butterfly                    |          | G1             | S1            | Threatened | None | IUCN:VU<br>USFS:S | Yes               |               |
| Lycaena rubidus<br>incana           | White Mountains copper                     |          | G5T2T3         | S1            | None       | None |                   | No                |               |
| Panoquina errans                    | wandering<br>(=saltmarsh) skipper          |          | G4G5           | S2            | None       | None | IUCN:NT           | Yes               |               |
| Philotiella speciosa<br>bohartorum  | Boharts' blue butterfly                    |          | G3T1           | S1            | None       | None |                   | Yes               |               |

January 5, 2023 Page 28 of 116

| Scientific Name                 | Common Name                             | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------------|-----------------------------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Plebejus anna lotis             | lotis blue butterfly                    |          | G4TH           | SH            | Endangered | None |                 | Yes               |               |
| Plebulina<br>emigdionis         | San Emigdio blue butterfly              |          | G1G2           | S1S2          | None       | None | USFS:S          | Yes               |               |
| Polites mardon                  | mardon skipper                          |          | G2             | S1            | None       | None | USFS:S          | Yes               |               |
| Polites sabuleti<br>albamontana | White Mountains sandhill skipper        |          | G5T2           | S2            | None       | None |                 | No                |               |
| Pseudocopaeodes<br>eunus eunus  | alkali skipper                          |          | G3T2           | S2            | None       | None |                 | No                |               |
| Pseudocopaeodes eunus obscurus  | Carson wandering skipper                |          | G3T1           | S2            | Endangered | None |                 | Yes               |               |
| Pyrgus ruralis<br>lagunae       | Laguna Mountains<br>skipper             |          | G5T1           | S1            | Endangered | None |                 | Yes               |               |
| Speyeria adiaste<br>adiaste     | unsilvered fritillary                   |          | G1G2T1         | S1            | None       | None |                 | Yes               |               |
| Speyeria callippe<br>callippe   | callippe silverspot butterfly           |          | G5T1           | S1            | Endangered | None |                 | Yes               |               |
| Speyeria egleis<br>tehachapina  | Tehachapi Mountain silverspot butterfly |          | G5T2           | S2            | None       | None | USFS:S          | Yes               |               |
| Speyeria nokomis carsonensis    | Carson Valley silverspot                |          | G3T1T2         | S1            | None       | None |                 | Yes               |               |
| Speyeria zerene<br>behrensii    | Behren's silverspot butterfly           |          | G5T1           | S1            | Endangered | None |                 | Yes               |               |
| Speyeria zerene<br>hippolyta    | Oregon silverspot butterfly             |          | G5T1           | S1            | Threatened | None |                 | Yes               |               |
| Speyeria zerene<br>myrtleae     | Myrtle's silverspot butterfly           |          | G5T1           | S1            | Endangered | None |                 | Yes               | Yes           |
| Speyeria zerene<br>sonomensis   | Sonoma zerene fritillary                |          | G5T1           | S1            | None       | None |                 | Yes               |               |

January 5, 2023 Page 29 of 116

## INSECTA, Order Trichoptera (caddisflies)

| Scientific Name            | Common Name                              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|------------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Cryptochia<br>denningi     | Denning's cryptic caddisfly              |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Cryptochia<br>excella      | Kings Canyon cryptochian caddisfly       |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Cryptochia<br>shasta       | confusion caddisfly                      |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Desmona<br>bethula         | amphibious caddisfly                     |          | G2G3           | S2S3          | None | None |                 | Yes               |               |
| Diplectrona<br>californica | California<br>diplectronan<br>caddisfly  |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Ecclisomyia<br>bilera      | Kings Creek<br>ecclysomyian<br>caddisfly |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Farula praelonga           | long-tailed caddisfly                    |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Goeracea<br>oregona        | Sagehen Creek goeracean caddisfly        |          | G3             | S1S2          | None | None |                 | Yes               |               |
| Lepidostoma<br>ermanae     | Cold Spring caddisfly                    |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Limnephilus<br>atercus     | Fort Dick limnephilus caddisfly          |          | G3G4           | S1            | None | None |                 | Yes               |               |
| Neothremma<br>genella      | golden-horned caddisfly                  |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Neothremma<br>siskiyou     | Siskiyou caddisfly                       |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Parapsyche<br>extensa      | King's Creek parapsyche caddisfly        |          | GH             | S1            | None | None |                 | Yes               |               |

January 5, 2023 Page 30 of 116

| Scientific Name        | Common Name                         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------|-------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Rhyacophila<br>lineata | Castle Crags rhyacophilan caddisfly |          | G1G3           | S1S2          | None | None |                 | Yes               |               |
| Rhyacophila<br>mosana  | bilobed rhyacophilan caddisfly      |          | G1G2Q          | S1S2          | None | None |                 | Yes               |               |
| Rhyacophila<br>spinata | spiny rhyacophilan caddisfly        |          | G1G2           | S3            | None | None |                 | Yes               |               |

### INSECTA, Order Hymenoptera (ants, bees, and wasps)

| Scientific<br>Name         | Common Name                           | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA                    | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|---------------------------------------|----------|----------------|---------------|------------|-------------------------|-----------------|-------------------|---------------|
| Andrena<br>blennospermatis | Blennosperma vernal pool andrenid bee |          | G2             | S2            | None       | None                    |                 | Yes               |               |
| Andrena<br>macswaini       | An andrenid bee                       |          | G2             | S2            | None       | None                    |                 | Yes               |               |
| Andrena<br>subapasta       | An andrenid bee                       |          | G1G2           | S1S2          | None       | None                    |                 | Yes               |               |
| Argochrysis<br>lassenae    | Lassen cuckoo wasp                    |          | G1             | S2            | None       | None                    |                 | Yes               |               |
| Ashmeadiella<br>chumashae  | Channel Islands leaf-<br>cutter bee   |          | G2?            | S2?           | None       | None                    |                 | Yes               |               |
| Bombus<br>caliginosus      | obscure bumble bee                    |          | G2G3           | S1S2          | None       | None                    | IUCN:VU         | Yes               |               |
| Bombus crotchii            | Crotch bumble bee                     |          | G2             | S2            | None       | Candidate<br>Endangered | IUCN:EN         | Yes               | Yes           |
| Bombus franklini           | Franklin's bumble bee                 |          | G1             | SH            | Endangered | Candidate<br>Endangered | IUCN:CR         | Yes               | Yes           |
| Bombus<br>morrisoni        | Morrison bumble bee                   |          | G3             | S1S2          | None       | None                    | IUCN:VU         | Yes               |               |

Page 31 of 116

| Scientific<br>Name         | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA                    | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|----------------------------|-----------------------------|----------|----------------|---------------|------|-------------------------|-------------------|-------------------|---------------|
| Bombus<br>occidentalis     | western bumble bee          |          | G3             | S1            | None | Candidate<br>Endangered | IUCN:VU<br>USFS:S | Yes               | Yes           |
| Bombus<br>pensylvanicus    | American bumble bee         |          | G3G4           | S2            | None | None                    | IUCN:VU           | No                |               |
| Bombus<br>suckleyi         | Suckley's cuckoo bumble bee |          | G2G3           | S1            | None | Candidate<br>Endangered | IUCN:CR           | Yes               | Yes           |
| Ceratochrysis<br>bradleyi  | Bradley's cuckoo<br>wasp    |          | G1             | S1            | None | None                    |                   | Yes               |               |
| Ceratochrysis<br>gracilis  | Piute Mountains cuckoo wasp |          | G1             | S1            | None | None                    |                   | Yes               |               |
| Ceratochrysis<br>Iongimala | Desert cuckoo wasp          |          | G1             | S1            | None | None                    |                   | Yes               |               |
| Ceratochrysis<br>menkei    | Menke's cuckoo<br>wasp      |          | G1             | S2            | None | None                    |                   | Yes               |               |
| Chrysis<br>tularensis      | Tulare cuckoo wasp          |          | G1G2           | S1S2          | None | None                    |                   | Yes               |               |
| Cleptes<br>humboldti       | Humboldt cuckoo<br>wasp     |          | G1G2           | S1S2          | None | None                    |                   | Yes               |               |
| Dufourea stagei            | Stage's dufourine bee       |          | G1G2           | S1            | None | None                    |                   | Yes               |               |
| Eucerceris<br>ruficeps     | redheaded sphecid wasp      |          | G1G3           | S1S2          | None | None                    |                   | Yes               |               |
| Euparagia<br>unidentata    | Algodones euparagia         |          | G1G2           | S1S2          | None | None                    |                   | Yes               |               |
| Habropoda<br>pallida       | white faced bee             |          | G1G2           | S1S2          | None | None                    |                   | No                |               |
| Halictus<br>harmonius      | haromonius halictid bee     |          | G1             | S3            | None | None                    |                   | Yes               |               |

January 5, 2023 Page 32 of 116

| Scientific<br>Name               | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------------|------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Hedychridium argenteum           | Riverside cuckoo wasp        |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Hedychridium<br>milleri          | Borax Lake cuckoo<br>wasp    |          | G1             | S1            | None | None |                 | Yes               |               |
| Lasioglossum channelense         | Channel Island sweat bee     |          | G1             | S3            | None | None |                 | Yes               |               |
| Melitta<br>californica           | California mellitid bee      |          | G4?            | S2?           | None | None |                 | Yes               |               |
| Microbembex elegans              | Algodones elegant sand wasp  |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Minymischa<br>ventura            | Ventura cuckoo<br>wasp       |          | GU             | SU            | None | None |                 | Yes               |               |
| Myrmosula<br>pacifica            | Antioch multilid wasp        |          | GH             | SH            | None | None |                 | Yes               |               |
| Neolarra alba                    | white cuckoo bee             |          | GH             | SH            | None | None |                 | Yes               |               |
| Paranomada californica           | California cuckoo bee        |          | G1             | S1            | None | None |                 | Yes               |               |
| Parnopes<br>borregoensis         | Borrego parnopes cuckoo wasp |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Perdita<br>algodones             | Algodones perdita            |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Perdita frontalis                | Imperial Perdita             |          | G1G2           | S1S2          | None | None |                 | Yes               |               |
| Perdita hirticeps<br>luteocincta | yellow-banded andrenid bee   |          | GNRTX          | SX            | None | None |                 | No                |               |
| Perdita scitula antiochensis     | Antioch andrenid bee         |          | G1T1           | S1            | None | None |                 | Yes               |               |
| Perdita<br>stephanomeriae        | a miner bee                  |          | GNR            | S1S2          | None | None |                 | Yes               |               |

Page 33 of 116 January 5, 2023

| Scientific<br>Name          | Common Name                               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-------------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Philanthus<br>nasalis       | Antioch specid wasp                       |          | G1             | S2            | None | None |                 | Yes               |               |
| Protodufourea<br>wasbaueri  | Wasbauer's protodufourea bee              |          | G1             | S1            | None | None |                 | Yes               |               |
| Protodufourea<br>zavortinki | Zavortink's protodufourea bee             |          | G1             | S1            | None | None |                 | Yes               |               |
| Rhopalolemma<br>robertsi    | Roberts' rhopalolemma bee                 |          | G1             | S1            | None | None |                 | Yes               |               |
| Sedomaya<br>glamisensis     | Glamis night tiphiid                      |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Sphaeropthalma<br>ecarinata | Glamis night mutillid                     |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Sphecodogastra antiochensis | Antioch Dunes halcitid bee                |          | G1             | S1            | None | None |                 | Yes               |               |
| Stictiella<br>villegasi     | Algodones sand wasp                       |          | G1G2           | S1S2          | None | None |                 | No                |               |
| Trachusa<br>gummifera       | San Francisco Bay<br>Area leaf-cutter bee |          | G1             | S1            | None | None |                 | Yes               |               |

Page 34 of 116 January 5, 2023

## **Fishes**

## PETROMYZONTIDAE (lampreys)

| Scientific Name                   | Common Name                          | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                                  | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|--------------------------------------|----------|----------------|---------------|------|------|--------------------------------------------------|-------------------|---------------|
| Entosphenus folletti              | northern California<br>brook lamprey |          | G1G2           | S1S2          | None | None | CDFW:SSC                                         | Yes               |               |
| Entosphenus<br>lethophagus        | Pit-Klamath brook lamprey            |          | G3G4           | S3            | None | None | AFS:VU<br>CDFW:SSC<br>IUCN:LC                    | Yes               |               |
| Entosphenus similis               | Klamath River<br>lamprey             |          | G3G4Q          | S3            | None | None | AFS:TH<br>CDFW:SSC<br>IUCN:NT<br>USFS:S          | Yes               |               |
| Entosphenus<br>tridentatus        | Pacific lamprey                      |          | G4             | S3            | None | None | AFS:VU<br>BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Entosphenus<br>tridentatus ssp. 1 | Goose Lake<br>lamprey                |          | G4T1           | S1            | None | None | AFS:VU<br>CDFW:SSC<br>USFS:S                     | Yes               |               |
| Lampetra ayresii                  | western river<br>lamprey             |          | G5             | S3            | None | None | AFS:VU<br>CDFW:SSC<br>IUCN:LC                    | No                |               |
| Lampetra hubbsi                   | Kern brook lamprey                   |          | G1G2           | S1S2          | None | None | AFS:TH<br>CDFW:SSC<br>IUCN:VU<br>USFS:S          | Yes               |               |
| Lampetra<br>richardsoni           | western brook<br>lamprey             |          | G4G5           | S3S4          | None | None | CDFW:SSC<br>IUCN:LC<br>USFS:S                    | Yes               |               |

January 5, 2023 Page 35 of 116

## ACIPENSERIDAE (sturgeon)

| Scientific Name                 | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|---------------------------------|----------------------------------|----------|----------------|---------------|------------|------|-------------------------------|-------------------|---------------|
| Acipenser<br>medirostris pop. 1 | green sturgeon -<br>southern DPS |          | G2T1           | S1            | Threatened | None | AFS:VU<br>IUCN:EN             | Yes               |               |
| Acipenser<br>medirostris pop. 2 | green sturgeon -<br>northern DPS |          | G2T1           | S1            | None       | None | AFS:VU<br>CDFW:SSC<br>IUCN:VU | Yes               |               |
| Acipenser<br>transmontanus      | white sturgeon                   |          | G4             | S2            | None       | None | AFS:EN<br>CDFW:SSC<br>IUCN:VU | No                |               |

### **SALMONIDAE** (trout and salmon)

| Scientific<br>Name                | Common Name                                                      | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|------------------------------------------------------------------|----------|----------------|---------------|------------|------------|------------------------------|-------------------|---------------|
| Oncorhynchus<br>clarkii clarkii   | coast cutthroat<br>trout                                         |          | G5T4           | S3            | None       | None       | AFS:VU<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>clarkii henshawi  | Lahontan<br>cutthroat trout                                      |          | G5T3           | S2            | Threatened | None       | AFS:TH                       | Yes               |               |
| Oncorhynchus<br>clarkii seleniris | Paiute cutthroat trout                                           |          | G5T1           | S1            | Threatened | None       | AFS:EN                       | Yes               |               |
| Oncorhynchus<br>gorbuscha         | pink salmon                                                      |          | G5             | S1            | None       | None       |                              | Yes               |               |
| Oncorhynchus<br>keta              | chum salmon                                                      |          | G5             | S1            | None       | None       |                              | No                |               |
| Oncorhynchus<br>kisutch pop. 2    | coho salmon -<br>southern Oregon<br>/ northern<br>California ESU |          | G5T2Q          | S2            | Threatened | Threatened | AFS:TH                       | Yes               | Yes           |

January 5, 2023 Page 36 of 116

| Scientific<br>Name                        | Common Name                                             | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA                    | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|---------------------------------------------------------|----------|----------------|---------------|------------|-------------------------|------------------------------|-------------------|---------------|
| Oncorhynchus<br>kisutch pop. 4            | coho salmon -<br>central California<br>coast ESU        |          | G5T2Q          | S2            | Endangered | Endangered              | AFS:EN                       | Yes               | Yes           |
| Oncorhynchus<br>mykiss<br>aguabonita      | California golden trout                                 |          | G5T1           | S1            | None       | None                    | AFS:TH<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>mykiss<br>aquilarum       | Eagle Lake rainbow trout                                |          | G5T1           | S1            | None       | None                    | AFS:TH<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>mykiss gilberti           | Kern River rainbow trout                                |          | G5T1Q          | S1            | None       | None                    | AFS:TH<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>mykiss irideus<br>pop. 1  | steelhead -<br>Klamath<br>Mountains<br>Province DPS     |          | G5T3Q          | S2            | None       | None                    | CDFW:SSC<br>USFS:S           | No                | Yes           |
| Oncorhynchus<br>mykiss irideus<br>pop. 10 | steelhead -<br>southern<br>California DPS               |          | G5T1Q          | S1            | Endangered | Candidate<br>Endangered | AFS:EN                       | Yes               | Yes           |
| Oncorhynchus<br>mykiss irideus<br>pop. 11 | steelhead -<br>Central Valley<br>DPS                    |          | G5T2Q          | S2            | Threatened | None                    | AFS:TH                       | Yes               | Yes           |
| Oncorhynchus<br>mykiss irideus<br>pop. 16 | steelhead -<br>northern<br>California DPS               |          | G5T2T3Q        | S1            | Threatened | None                    | AFS:TH                       | Yes               | Yes           |
| Oncorhynchus<br>mykiss irideus<br>pop. 48 | steelhead -<br>northern<br>California DPS<br>summer-run |          | G5TNRQ         | S2            | Threatened | Endangered              | AFS:TH                       | Yes               |               |

Page 37 of 116

| Scientific<br>Name                        | Common Name                                                    | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|----------------------------------------------------------------|----------|----------------|---------------|------------|------------|------------------------------|-------------------|---------------|
| Oncorhynchus<br>mykiss irideus<br>pop. 49 | steelhead -<br>northern<br>California DPS<br>winter-run        |          | G5TNRQ         | S3            | Threatened | None       | AFS:TH                       | No                |               |
| Oncorhynchus<br>mykiss irideus<br>pop. 8  | steelhead -<br>central California<br>coast DPS                 |          | G5T2T3Q        | S3            | Threatened | None       | AFS:TH                       | Yes               | Yes           |
| Oncorhynchus<br>mykiss irideus<br>pop. 9  | steelhead -<br>south-central<br>California coast<br>DPS        |          | G5T2Q          | S2            | Threatened | None       | AFS:TH                       | Yes               | Yes           |
| Oncorhynchus<br>mykiss ssp. 1             | Goose Lake redband trout                                       |          | G5T2Q          | S2            | None       | None       | AFS:VU<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>mykiss ssp. 2             | McCloud River redband trout                                    |          | G5T1T2         | S1S2          | None       | None       | AFS:VU<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>mykiss ssp. 3             | Warner Valley redband trout                                    |          | G5T2Q          | S1?           | None       | None       | AFS:VU<br>USFS:S             | No                |               |
| Oncorhynchus<br>mykiss whitei             | Little Kern golden trout                                       |          | G5T2           | S3            | Threatened | None       | AFS:EN                       | Yes               |               |
| Oncorhynchus<br>tshawytscha<br>pop. 11    | chinook salmon -<br>Central Valley<br>spring-run ESU           |          | G5T2Q          | S2            | Threatened | Threatened | AFS:TH                       | Yes               | Yes           |
| Oncorhynchus<br>tshawytscha<br>pop. 13    | chinook salmon -<br>Central Valley fall<br>/ late fall-run ESU |          | G5T3Q          | S3            | None       | None       | AFS:VU<br>CDFW:SSC<br>USFS:S | No                | Yes           |

January 5, 2023 Page 38 of 116

| Scientific<br>Name                     | Common Name                                                           | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|----------------------------------------|-----------------------------------------------------------------------|----------|----------------|---------------|------------|------------|--------------------|-------------------|---------------|
| Oncorhynchus<br>tshawytscha<br>pop. 14 | chinook salmon -<br>southern<br>Oregon/northern<br>California coastal |          | G5T3Q          | SNR           | None       | None       | CDFW:SSC           | No                |               |
| Oncorhynchus<br>tshawytscha<br>pop. 17 | chinook salmon -<br>California coastal<br>ESU                         |          | G5T2Q          | S2            | Threatened | None       | AFS:TH             | Yes               | Yes           |
| Oncorhynchus<br>tshawytscha<br>pop. 30 | chinook salmon -<br>upper Klamath<br>and Trinity Rivers<br>ESU        |          | G5T2Q          | S2            | Candidate  | Threatened | CDFW:SSC<br>USFS:S | Yes               |               |
| Oncorhynchus<br>tshawytscha<br>pop. 7  | chinook salmon -<br>Sacramento<br>River winter-run<br>ESU             |          | G5T1Q          | S2            | Endangered | Endangered | AFS:EN             | Yes               |               |
| Prosopium<br>williamsoni               | mountain<br>whitefish                                                 |          | G5             | S3            | None       | None       | CDFW:SSC           | Yes               |               |
| Salvelinus<br>confluentus              | bull trout                                                            |          | G5             | SX            | Threatened | Endangered | IUCN:VU            | Yes               |               |

# OSMERIDAE (smelt)

| Scientific Name             | Common Name   | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|-----------------------------|---------------|----------|----------------|---------------|------------|------------|-------------------|-------------------|---------------|
| Hypomesus<br>transpacificus | Delta smelt   |          | G1             | S1            | Threatened | Endangered | AFS:TH<br>IUCN:CR | Yes               |               |
| Spirinchus<br>thaleichthys  | longfin smelt |          | G5             | S1            | Candidate  | Threatened | IUCN:LC           | Yes               | Yes           |
| Thaleichthys pacificus      | eulachon      |          | G5             | S1            | Threatened | None       | IUCN:LC           | Yes               | Yes           |

January 5, 2023 Page 39 of 116

# **CYPRINIDAE** (minnows and carp)

| Scientific Name                             | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                         | Records in CNDDB? | End<br>Notes? |
|---------------------------------------------|-----------------------------|----------|----------------|---------------|------------|------------|-----------------------------------------|-------------------|---------------|
| Gila coerulea                               | blue chub                   |          | G3G4           | S2S3          | None       | None       | CDFW:SSC<br>IUCN:LC                     | Yes               |               |
| Gila elegans                                | bonytail                    |          | G1             | SH            | Endangered | Endangered | AFS:EN<br>IUCN:CR                       | Yes               |               |
| Gila orcuttii                               | arroyo chub                 |          | G2             | S2            | None       | None       | AFS:VU<br>CDFW:SSC<br>IUCN:VU<br>USFS:S | Yes               |               |
| Hesperoleucus<br>mitrulus                   | northern roach              |          | G2             | S2            | None       | None       | AFS:VU<br>CDFW:SSC                      | Yes               |               |
| Hesperoleucus<br>parvipinnis                | Gualala roach               |          | G3             | S3            | None       | None       | CDFW:SSC                                | Yes               |               |
| Hesperoleucus<br>symmetricus<br>serpentinus | Red Hills roach             |          | GNRT1          | S1            | None       | None       | AFS:VU<br>BLM:S<br>CDFW:SSC             | Yes               |               |
| Hesperoleucus symmetricus symmetricus       | central California<br>roach |          | GNRT3          | S3            | None       | None       | CDFW:SSC                                | Yes               |               |
| Hesperoleucus<br>venustus<br>navarroensis   | northern coastal roach      |          | GNRT3          | S3            | None       | None       | CDFW:SSC                                | Yes               |               |
| Hesperoleucus<br>venustus subditus          | southern coastal roach      |          | GNRT2          | S2            | None       | None       | CDFW:SSC                                | Yes               |               |
| Hesperoleucus venustus x H. symmetricus     | Clear Lake<br>roach         |          | G3             | S3            | None       | None       | CDFW:SSC                                | No                |               |
| Lavinia exilicauda<br>chi                   | Clear Lake hitch            |          | G4T1           | S1            | None       | Threatened | AFS:VU<br>USFS:S                        | Yes               |               |

January 5, 2023 Page 40 of 116

| Scientific Name                  | Common Name                         | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|----------------------------------|-------------------------------------|----------|----------------|---------------|------------|------------|-------------------------------|-------------------|---------------|
| Lavinia exilicauda<br>exilicauda | Sacramento hitch                    |          | G4T3           | S3            | None       | None       | CDFW:SSC                      | No                |               |
| Lavinia exilicauda<br>harengus   | Monterey hitch                      |          | G4T3           | S3            | None       | None       | CDFW:SSC                      | Yes               |               |
| Mylopharodon<br>conocephalus     | hardhead                            |          | G3             | S3            | None       | None       | CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Pogonichthys<br>macrolepidotus   | Sacramento splittail                |          | G3             | S3            | None       | None       | AFS:VU<br>CDFW:SSC<br>IUCN:LC | Yes               |               |
| Ptychocheilus<br>lucius          | Colorado<br>pikeminnow              |          | G1             | SX            | Endangered | Endangered | CDFW:FP<br>IUCN:VU            | Yes               |               |
| Rhinichthys<br>osculus ssp. 1    | Amargosa<br>Canyon<br>speckled dace |          | G5T3Q          | S3            | None       | None       | AFS:TH<br>BLM:S<br>CDFW:SSC   | Yes               | Yes           |
| Rhinichthys<br>osculus ssp. 12   | Long Valley speckled dace           |          | G5T1           | S1            | None       | None       | AFS:EN<br>CDFW:SSC            | Yes               | Yes           |
| Rhinichthys<br>osculus ssp. 2    | Owens speckled dace                 |          | G5T2Q          | S2            | None       | None       | AFS:TH<br>BLM:S<br>CDFW:SSC   | Yes               | Yes           |
| Rhinichthys<br>osculus ssp. 8    | Santa Ana<br>speckled dace          |          | G5T1           | S1            | None       | None       | AFS:TH<br>CDFW:SSC<br>USFS:S  | Yes               | Yes           |
| Siphateles bicolor mohavensis    | Mohave tui chub                     |          | G4T1           | S1            | Endangered | Endangered | AFS:EN<br>CDFW:FP             | Yes               |               |
| Siphateles bicolor pectinifer    | Lahontan Lake<br>tui chub           |          | G4T3           | S1S2          | None       | None       | CDFW:SSC                      | Yes               |               |
| Siphateles bicolor<br>snyderi    | Owens tui chub                      |          | G4T1           | S1            | Endangered | Endangered | AFS:EN                        | Yes               |               |

January 5, 2023 Page 41 of 116

| Scientific Name                | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status             | Records in CNDDB? | End<br>Notes? |
|--------------------------------|-------------------------------|----------|----------------|---------------|------|------|-----------------------------|-------------------|---------------|
| Siphateles bicolor ssp. 11     | High Rock<br>Springs tui chub |          | G4TX           | SX            | None | None |                             | Yes               | Yes           |
| Siphateles bicolor ssp. 12     | Eagle Lake tui<br>chub        |          | G4T1T2         | S1S2          | None | None | CDFW:SSC                    | Yes               | Yes           |
| Siphateles bicolor ssp. 14     | Pit River tui chub            |          | G4T1T3         | S1S3          | None | None |                             | No                | Yes           |
| Siphateles bicolor thalassinus | Goose Lake tui<br>chub        |          | G4T2T3         | S2            | None | None | AFS:TH<br>CDFW:SSC          | Yes               |               |
| Siphateles bicolor vaccaceps   | Cow Head tui<br>chub          |          | G4T1           | S1            | None | None | AFS:EN<br>BLM:S<br>CDFW:SSC | Yes               |               |

## **CATOSTOMIDAE** (suckers)

| Scientific Name                              | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA      | CESA       | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|----------------------------------------------|-----------------------------|----------|----------------|---------------|----------|------------|------------------------------|-------------------|---------------|
| Catostomus<br>fumeiventris                   | Owens sucker                |          | G3             | S3            | None     | None       | CDFW:SSC<br>IUCN:LC          | Yes               |               |
| Catostomus<br>lahontan                       | Lahontan<br>mountain sucker |          | GNR            | S2            | None     | None       | CDFW:SSC                     | Yes               |               |
| Catostomus<br>latipinnis                     | flannelmouth sucker         |          | G3G4           | S1            | None     | None       | IUCN:LC                      | Yes               |               |
| Catostomus<br>microps                        | Modoc sucker                |          | G2             | S2            | Delisted | Endangered | AFS:EN<br>CDFW:FP<br>IUCN:NT | Yes               |               |
| Catostomus<br>occidentalis<br>lacusanserinus | Goose Lake<br>sucker        |          | G5T2Q          | S1            | None     | None       | AFS:VU<br>CDFW:SSC<br>USFS:S | Yes               |               |
| Catostomus<br>rimiculus ssp. 1               | Jenny Creek<br>sucker       |          | G5T2Q          | S1            | None     | None       | AFS:VU                       | No                |               |

January 5, 2023 Page 42 of 116

| Scientific Name            | Common Name                     | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|----------------------------|---------------------------------|----------|----------------|---------------|------------|------------|-------------------------------|-------------------|---------------|
| Catostomus<br>santaanae    | Santa Ana<br>sucker             |          | G1             | S1            | Threatened | None       | AFS:TH<br>IUCN:EN             | Yes               |               |
| Catostomus<br>snyderi      | Klamath<br>largescale<br>sucker |          | G3             | S3            | None       | None       | AFS:TH<br>CDFW:SSC<br>IUCN:NT | Yes               |               |
| Chasmistes<br>brevirostris | shortnose sucker                |          | G1             | S1            | Endangered | Endangered | AFS:EN<br>CDFW:FP<br>IUCN:EN  | Yes               |               |
| Deltistes luxatus          | Lost River sucker               |          | G1             | S1            | Endangered | Endangered | AFS:EN<br>CDFW:FP<br>IUCN:EN  | Yes               |               |
| Xyrauchen<br>texanus       | razorback sucker                |          | G1             | S1S2          | Endangered | Endangered | AFS:EN<br>CDFW:FP<br>IUCN:CR  | Yes               |               |

## CYPRINODONTIDAE (killifishes)

| Scientific Name                        | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|----------------------------------------|--------------------------|----------|----------------|---------------|------------|------------|----------------------------------------|-------------------|---------------|
| Cyprinodon<br>macularius               | desert pupfish           |          | G1             | S1            | Endangered | Endangered | AFS:EN<br>IUCN:VU                      | Yes               |               |
| Cyprinodon<br>nevadensis<br>amargosae  | Amargosa<br>pupfish      |          | G2T1T2         | S1S2          | None       | None       | AFS:VU<br>BLM:S<br>CDFW:SSC<br>IUCN:VU | Yes               |               |
| Cyprinodon<br>nevadensis<br>nevadensis | Saratoga Springs pupfish |          | G2T1           | S1            | None       | None       | AFS:TH<br>CDFW:SSC<br>IUCN:VU          | Yes               |               |
| Cyprinodon<br>nevadensis<br>shoshone   | Shoshone pupfish         |          | G2T1           | S1            | None       | None       | AFS:EN<br>CDFW:SSC<br>IUCN:VU          | Yes               |               |

January 5, 2023 Page 43 of 116

| Scientific Name               | Common Name              | Comments | Global<br>Rank | State<br>Rank |            | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|-------------------------------|--------------------------|----------|----------------|---------------|------------|------------|-------------------------------|-------------------|---------------|
| Cyprinodon<br>radiosus        | Owens pupfish            |          | G1             | S1            | Endangered | Endangered | AFS:EN<br>CDFW:FP<br>IUCN:EN  | Yes               |               |
| Cyprinodon<br>salinus milleri | Cottonball Marsh pupfish |          | G1T1Q          | S1            | None       | Threatened | AFS:TH<br>IUCN:EN             | Yes               |               |
| Cyprinodon<br>salinus salinus | Salt Creek<br>pupfish    |          | G1T1           | S1            | None       | None       | AFS:VU<br>CDFW:SSC<br>IUCN:EN | Yes               |               |

## GASTEROSTEIDAE (sticklebacks)

| Scientific Name                            | Common Name                            | Comments                           | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|--------------------------------------------|----------------------------------------|------------------------------------|----------------|---------------|------------|------------|-------------------|-------------------|---------------|
| Gasterosteus<br>aculeatus<br>microcephalus | resident<br>threespine<br>stickleback  | South of Pt.<br>Conception<br>only | G5T2T3         | S2S3          | None       | None       |                   | No                | Yes           |
| Gasterosteus<br>aculeatus<br>williamsoni   | unarmored<br>threespine<br>stickleback |                                    | G5T1           | S1            | Endangered | Endangered | AFS:EN<br>CDFW:FP | Yes               | Yes           |

### **CENTRARCHIDAE** (sunfishes)

| Scientific Name         | Common Name      | Comments                 | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|-------------------------|------------------|--------------------------|----------------|---------------|------|------|-------------------------------|-------------------|---------------|
| Archoplites interruptus | Sacramento perch | Within native range only | G1             | S1            | None | None | AFS:TH<br>CDFW:SSC<br>IUCN:EN | Yes               |               |

January 5, 2023 Page 44 of 116

### **EMBIOTOCIDAE** (surfperches)

| Scientific Name                  | Common Name                          | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|----------------------------------|--------------------------------------|----------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Hysterocarpus<br>traskii lagunae | Clear Lake tule perch                |          | G5T3           | S3            | None | None | CDFW:SSC           | Yes               |               |
| Hysterocarpus<br>traskii pomo    | Russian River tule perch             |          | G5T4           | S4            | None | None | AFS:VU<br>CDFW:SSC | Yes               |               |
| Hysterocarpus<br>traskii traskii | Sacramento-San<br>Joaquin tule perch |          | G5T2T3         | S2S3          | None | None |                    | No                |               |

### **GOBIIDAE** (gobies)

| Scientific Name            | Common Name    | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|----------------------------|----------------|----------|----------------|---------------|------------|------|-------------------|-------------------|---------------|
| Eucyclogobius<br>newberryi | tidewater goby |          | G3             | S3            | Endangered | None | AFS:EN<br>IUCN:NT | Yes               |               |

## **COTTIDAE** (sculpins)

| Scientific Name                        | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status                       | Records in CNDDB? | End<br>Notes? |
|----------------------------------------|-------------------------------|----------|----------------|---------------|------|------------|---------------------------------------|-------------------|---------------|
| Cottus asper ssp.                      | Clear Lake prickly sculpin    |          | G5T1           | SNR           | None | None       | CDFW:SSC                              | No                |               |
| Cottus asperrimus                      | rough sculpin                 |          | G2             | S2            | None | Threatened | AFS:VU<br>BLM:S<br>CDFW:FP<br>IUCN:NT | Yes               |               |
| Cottus gulosus                         | riffle sculpin                |          | G5             | S4            | None | None       | CDFW:SSC<br>IUCN:LC                   | No                |               |
| Cottus<br>klamathensis<br>klamathensis | Upper Klamath marbled sculpin |          | G4T1T2         | S1S2          | None | None       | CDFW:SSC                              | Yes               |               |

January 5, 2023 Page 45 of 116

| Scientific Name                     | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|-------------------------------------|-------------------------------|----------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Cottus<br>klamathensis<br>macrops   | bigeye marbled sculpin        |          | G4T2T3         | S2S3          | None | None | AFS:VU<br>CDFW:SSC | Yes               |               |
| Cottus<br>klamathensis<br>polyporus | Lower Klamath marbled sculpin |          | G4T2T4         | S2S4          | None | None | CDFW:SSC           | Yes               |               |
| Cottus perplexus                    | reticulate sculpin            |          | G4             | S2S3          | None | None | IUCN:LC            | No                |               |

January 5, 2023 Page 46 of 116

# **Amphibians**

### **AMBYSTOMATIDAE** (mole salamanders)

| Scientific Name                          | Common<br>Name                                                  | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|------------------------------------------|-----------------------------------------------------------------|----------|----------------|---------------|------------|------------|--------------------|-------------------|---------------|
| Ambystoma<br>californiense pop.<br>1     | California tiger<br>salamander -<br>central<br>California DPS   |          | G2G3T3         | S3            | Threatened | Threatened | CDFW:WL<br>IUCN:VU | Yes               |               |
| Ambystoma<br>californiense pop.<br>2     | California tiger<br>salamander -<br>Santa Barbara<br>County DPS |          | G2G3T2         | S2            | Endangered | Threatened | CDFW:WL<br>IUCN:VU | Yes               |               |
| Ambystoma<br>californiense pop.<br>3     | California tiger<br>salamander -<br>Sonoma<br>County DPS        |          | G2G3T2         | S2            | Endangered | Threatened | CDFW:WL<br>IUCN:VU | Yes               |               |
| Ambystoma<br>macrodactylum<br>croceum    | Santa Cruz<br>long-toed<br>salamander                           |          | G5T1T2         | S1S2          | Endangered | Endangered | CDFW:FP            | Yes               |               |
| Ambystoma<br>macrodactylum<br>sigillatum | southern long-<br>toed<br>salamander                            |          | G5T4           | S3            | None       | None       | CDFW:SSC           | Yes               |               |

## **DICAMPTODONTIDAE** (giant salamanders)

| Scientific Name     | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|---------------------|-----------------------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Dicamptodon ensatus | California giant salamander |          | G2G3           | S2S3          | None | None | CDFW:SSC<br>IUCN:NT | Yes               |               |

January 5, 2023 Page 47 of 116

# RHYACOTRITONIDAE (Olympic salamanders)

| Scientific Name         | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|-------------------------|-----------------------------|----------|----------------|---------------|------|------|-------------------------------|-------------------|---------------|
| Rhyacotriton variegatus | southern torrent salamander |          | G3G4           | S2S3          | None | None | CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |

## SALAMANDRIDAE (newts)

| Scientific Name   | Common Name      | Comments                        | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-------------------|------------------|---------------------------------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Taricha rivularis | red-bellied newt |                                 | G2             | S2            | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Taricha torosa    | Coast Range newt | Monterey<br>Co. & south<br>only | G4             | S4            | None | None | CDFW:SSC            | Yes               |               |

### **PLETHODONTIDAE** (lungless salamanders)

| Scientific Name             | Common Name                                     | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-------------------------------------------------|----------|----------------|---------------|------|------|----------------------------------------|-------------------|---------------|
| Aneides niger               | Santa Cruz black salamander                     |          | G3             | S3            | None | None | CDFW:SSC                               | Yes               | Yes           |
| Batrachoseps<br>altasierrae | Greenhorn<br>Mountains<br>slender<br>salamander |          | G2             | S2            | None | None |                                        | Yes               |               |
| Batrachoseps<br>bramei      | Fairview slender salamander                     |          | G3             | S3            | None | None | USFS:S                                 | Yes               |               |
| Batrachoseps<br>campi       | Inyo Mountains<br>slender<br>salamander         |          | G3             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:EN<br>USFS:S | Yes               |               |

January 5, 2023 Page 48 of 116

| Scientific Name              | Common Name                          | Comments | Global<br>Rank | State<br>Rank | ESA                    | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|------------------------------|--------------------------------------|----------|----------------|---------------|------------------------|------------|-------------------------------|-------------------|---------------|
| Batrachoseps<br>diabolicus   | Hell Hollow<br>slender<br>salamander |          | G3             | S3            | None                   | None       | IUCN:DD                       | No                |               |
| Batrachoseps<br>gabrieli     | San Gabriel<br>slender<br>salamander |          | G2G3           | S2S3          | None                   | None       | IUCN:DD<br>USFS:S             | Yes               |               |
| Batrachoseps<br>incognitus   | San Simeon<br>slender<br>salamander  |          | G2             | S2            | None                   | None       | IUCN:DD<br>USFS:S             | No                |               |
| Batrachoseps<br>kawia        | Sequoia slender salamander           |          | G2             | S2            | None                   | None       | IUCN:DD                       | No                |               |
| Batrachoseps<br>luciae       | Santa Lucia<br>slender<br>salamander |          | G3             | S3            | None                   | None       | IUCN:LC                       | No                |               |
| Batrachoseps<br>major aridus | desert slender salamander            |          | G4T1           | S1            | Endangered             | Endangered |                               | Yes               |               |
| Batrachoseps<br>minor        | lesser slender<br>salamander         |          | G1             | S1            | None                   | None       | CDFW:SSC<br>IUCN:DD<br>USFS:S | Yes               |               |
| Batrachoseps<br>pacificus    | Channel Islands slender salamander   |          | G3G4           | S3S4          | None                   | None       | IUCN:LC                       | Yes               |               |
| Batrachoseps<br>regius       | Kings River<br>slender<br>salamander |          | G2G3           | S2S3          | None                   | None       | IUCN:VU<br>USFS:S             | Yes               |               |
| Batrachoseps<br>relictus     | relictual slender<br>salamander      |          | G1             | S1            | Proposed<br>Endangered | None       | CDFW:SSC<br>IUCN:DD<br>USFS:S | Yes               | Yes           |
| Batrachoseps<br>robustus     | Kern Plateau<br>salamander           |          | G3             | S3            | None                   | None       | IUCN:NT                       | Yes               |               |

January 5, 2023 Page 49 of 116

| Scientific Name                        | Common Name                          | Comments | Global<br>Rank | State<br>Rank | ESA                    | CESA       | Other<br>Status                       | Records in CNDDB? | End<br>Notes? |
|----------------------------------------|--------------------------------------|----------|----------------|---------------|------------------------|------------|---------------------------------------|-------------------|---------------|
| Batrachoseps<br>simatus                | Kern Canyon<br>slender<br>salamander |          | G2G3           | S2S3          | Proposed<br>Threatened | Threatened | IUCN:VU<br>USFS:S                     | Yes               |               |
| Batrachoseps<br>stebbinsi              | Tehachapi<br>slender<br>salamander   |          | G2G3           | S2S3          | None                   | Threatened | BLM:S<br>IUCN:VU                      | Yes               |               |
| Batrachoseps<br>wakei                  | Arguello slender salamander          |          | GNR            | S1            | None                   | None       |                                       | Yes               |               |
| Ensatina<br>eschscholtzii<br>croceater | yellow-blotched<br>salamander        |          | G5T3           | S3            | None                   | None       | BLM:S<br>CDFW:WL<br>USFS:S            | Yes               |               |
| Ensatina<br>eschscholtzii<br>klauberi  | large-blotched salamander            |          | G5T2?          | S3            | None                   | None       | CDFW:WL<br>USFS:S                     | Yes               |               |
| Hydromantes<br>brunus                  | limestone<br>salamander              |          | G2G3           | S2S3          | None                   | Threatened | BLM:S<br>CDFW:FP<br>IUCN:VU<br>USFS:S | Yes               |               |
| Hydromantes platycephalus              | Mount Lyell salamander               |          | G4             | S4            | None                   | None       | CDFW:WL<br>IUCN:LC                    | Yes               |               |
| Hydromantes<br>shastae                 | Shasta<br>salamander                 |          | G3             | S3            | None                   | Threatened | BLM:S<br>IUCN:VU<br>USFS:S            | Yes               | Yes           |
| Plethodon asupak                       | Scott Bar<br>salamander              |          | G1G2           | S1S2          | None                   | Threatened | IUCN:VU                               | Yes               | Yes           |
| Plethodon<br>elongatus                 | Del Norte<br>salamander              |          | G4             | S3            | None                   | None       | CDFW:WL<br>IUCN:NT                    | Yes               |               |
| Plethodon stormi                       | Siskiyou<br>Mountains<br>salamander  |          | G3?            | S1S2          | None                   | Threatened | IUCN:EN<br>USFS:S                     | Yes               |               |

January 5, 2023 Page 50 of 116

### ASCAPHIDAE (tailed frogs)

| Scientific Name | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------|---------------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Ascaphus truei  | Pacific tailed frog |          | G4             | S3S4          | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |

#### **SCAPHIOPODIDAE** (spadefoot toads)

| Scientific Name    | Common Name       | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|--------------------|-------------------|----------|----------------|---------------|------|------|------------------------------|-------------------|---------------|
| Scaphiopus couchii | Couch's spadefoot |          | G5             | S2            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC | Yes               |               |
| Spea hammondii     | western spadefoot |          | G2G3           | S3S4          | None | None | BLM:S<br>CDFW:SSC<br>IUCN:NT | Yes               |               |

## **BUFONIDAE** (true toads)

| Scientific Name          | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                       | Records in CNDDB? | End<br>Notes? |
|--------------------------|---------------------|----------|----------------|---------------|------------|------------|---------------------------------------|-------------------|---------------|
| Anaxyrus<br>californicus | arroyo toad         |          | G2G3           | S2            | Endangered | None       | CDFW:SSC<br>IUCN:EN                   | Yes               | Yes           |
| Anaxyrus canorus         | Yosemite toad       |          | G2G3           | S2            | Threatened | None       | CDFW:SSC<br>IUCN:EN<br>USFS:S         | Yes               | Yes           |
| Anaxyrus exsul           | black toad          |          | G1             | S1            | None       | Threatened | BLM:S<br>CDFW:FP<br>IUCN:VU<br>USFS:S | Yes               | Yes           |
| Incilius alvarius        | Sonoran Desert toad |          | G5             | SH            | None       | None       | CDFW:SSC<br>IUCN:LC                   | Yes               | Yes           |

January 5, 2023 Page 51 of 116

# RANIDAE (true frogs)

| Scientific Name            | Common<br>Name                                            | Comments                | Global<br>Rank | State<br>Rank | ESA                    | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|----------------------------|-----------------------------------------------------------|-------------------------|----------------|---------------|------------------------|------------|-------------------------------|-------------------|---------------|
| Lithobates<br>pipiens      | northern<br>leopard frog                                  | Native populations only | G5             | S2            | None                   | None       | CDFW:SSC<br>IUCN:LC           | Yes               | Yes           |
| Lithobates<br>yavapaiensis | lowland leopard frog                                      |                         | G4             | SX            | None                   | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC  | Yes               | Yes           |
| Rana aurora                | northern red-<br>legged frog                              |                         | G4             | S3            | None                   | None       | CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               | Yes           |
| Rana boylii pop.<br>1      | foothill yellow-<br>legged frog -<br>north coast<br>DPS   |                         | G3TNRQ         | S4            | None                   | None       | BLM:S<br>CDFW:SSC<br>USFS:S   | Yes               |               |
| Rana boylii pop.<br>2      | foothill yellow-<br>legged frog -<br>Feather River<br>DPS |                         | G3T2           | S2            | Proposed<br>Threatened | Threatened | BLM:S<br>USFS:S               | Yes               |               |
| Rana boylii pop.<br>3      | foothill yellow-<br>legged frog -<br>north Sierra<br>DPS  |                         | G3T2           | S2            | None                   | Threatened | BLM:S<br>USFS:S               | Yes               |               |
| Rana boylii pop.<br>4      | foothill yellow-<br>legged frog -<br>central coast<br>DPS |                         | G3T2           | S2            | Proposed<br>Threatened | Endangered | BLM:S<br>USFS:S               | Yes               |               |
| Rana boylii pop.<br>5      | foothill yellow-<br>legged frog -<br>south Sierra<br>DPS  |                         | G3T2           | S2            | Proposed<br>Endangered | Endangered | BLM:S<br>USFS:S               | Yes               |               |

January 5, 2023 Page 52 of 116

| Scientific Name       | Common<br>Name                                          | Comments | Global<br>Rank | State<br>Rank | ESA                    | CESA                    | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|-----------------------|---------------------------------------------------------|----------|----------------|---------------|------------------------|-------------------------|-------------------------------|-------------------|---------------|
| Rana boylii pop.<br>6 | foothill yellow-<br>legged frog -<br>south coast<br>DPS |          | G3T1           | S1            | Proposed<br>Endangered | Endangered              | BLM:S<br>USFS:S               | Yes               |               |
| Rana cascadae         | Cascades frog                                           |          | G3G4           | S3            | None                   | Candidate<br>Endangered | CDFW:SSC<br>IUCN:NT<br>USFS:S | Yes               |               |
| Rana draytonii        | California red-<br>legged frog                          |          | G2G3           | S2S3          | Threatened             | None                    | CDFW:SSC<br>IUCN:VU           | Yes               | Yes           |
| Rana muscosa          | southern<br>mountain<br>yellow-legged<br>frog           |          | G1             | S1            | Endangered             | Endangered              | CDFW:WL<br>IUCN:EN<br>USFS:S  | Yes               | Yes           |
| Rana pretiosa         | Oregon spotted frog                                     |          | G2             | SH            | Threatened             | None                    | BLM:S<br>CDFW:SSC<br>IUCN:VU  | Yes               |               |
| Rana sierrae          | Sierra Nevada<br>yellow-legged<br>frog                  |          | G1             | S1            | Endangered             | Threatened              | CDFW:WL<br>IUCN:EN<br>USFS:S  | Yes               | Yes           |

Page 53 of 116 January 5, 2023

## Reptiles

### **CHELONIIDAE** (sea turtles)

| Scientific Name | Common Name  | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------|--------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Chelonia mydas  | green turtle |          | G3             | S1            | Threatened | None | IUCN:EN         | Yes               |               |

#### KINOSTERNIDAE (musk and mud turtles)

| Scientific Name           | Common Name        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|---------------------------|--------------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Kinosternon<br>sonoriense | Sonoran mud turtle |          | G4             | SH            | None | None | CDFW:SSC<br>IUCN:NT | Yes               |               |

### **EMYDIDAE** (box and water turtles)

| Scientific Name | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|-----------------|---------------------|----------|----------------|---------------|------|------|----------------------------------------|-------------------|---------------|
| Emys marmorata  | western pond turtle |          | G3G4           | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:VU<br>USFS:S | Yes               | Yes           |

#### **TESTUDINIDAE** (land tortoises)

| Scientific Name    | Common Name     | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------|-----------------|----------|----------------|---------------|------------|------------|-----------------|-------------------|---------------|
| Gopherus agassizii | desert tortoise |          | G3             | S2S3          | Threatened | Threatened | IUCN:CR         | Yes               |               |

January 5, 2023 Page 54 of 116

## **GEKKONIDAE** (geckos)

| Scientific Name             | Common Name               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status  | Records in CNDDB? | End<br>Notes? |
|-----------------------------|---------------------------|----------|----------------|---------------|------|------------|------------------|-------------------|---------------|
| Coleonyx switaki            | barefoot banded<br>gecko  |          | G4             | S1            | None | Threatened | BLM:S<br>IUCN:LC | Yes               |               |
| Coleonyx variegatus abbotti | San Diego banded<br>gecko |          | G5T5           | S1S2          | None | None       | CDFW:SSC         | Yes               |               |

### **CROTAPHYTIDAE** (collared and leopard lizards)

| Scientific Name | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------|-------------------------------|----------|----------------|---------------|------------|------------|---------------------|-------------------|---------------|
| Gambelia copeii | Cope's leopard lizard         |          | G5             | S1S2          | None       | None       | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Gambelia sila   | blunt-nosed<br>leopard lizard |          | G1             | S1            | Endangered | Endangered | CDFW:FP<br>IUCN:EN  | Yes               |               |

### PHRYNOSOMATIDAE (spiny lizards)

| Scientific Name                      | Common Name                         | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|--------------------------------------|-------------------------------------|----------|----------------|---------------|------------|------------|------------------------------|-------------------|---------------|
| Phrynosoma<br>blainvillii            | coast horned<br>lizard              |          | G3G4           | S4            | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC | Yes               |               |
| Phrynosoma<br>mcallii                | flat-tailed horned lizard           |          | G3             | S3            | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:NT | Yes               |               |
| Sceloporus<br>graciosus<br>graciosus | northern<br>sagebrush lizard        |          | G5T5           | S3            | None       | None       | BLM:S                        | Yes               |               |
| Uma inornata                         | Coachella Valley fringe-toed lizard |          | G1Q            | S1            | Threatened | Endangered | IUCN:EN                      | Yes               |               |

January 5, 2023 Page 55 of 116

| Scientific Name | Common Name                        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|-----------------|------------------------------------|----------|----------------|---------------|------|------|------------------------------|-------------------|---------------|
| Uma notata      | Colorado Desert fringe-toed lizard |          | G3             | S2            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:NT | Yes               |               |
| Uma scoparia    | Mojave fringe-<br>toed lizard      |          | G3G4           | S3S4          | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC | Yes               |               |

### **XANTUSIIDAE** (night lizards)

| Scientific Name             | Common Name            | Comments | Global<br>Rank | State<br>Rank | ESA      | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------------------|------------------------|----------|----------------|---------------|----------|------|---------------------|-------------------|---------------|
| Xantusia gracilis           | sandstone night lizard |          | G1             | S1            | None     | None | CDFW:SSC<br>IUCN:VU | Yes               |               |
| Xantusia riversiana         | island night lizard    |          | G3             | S3            | Delisted | None | IUCN:LC             | Yes               |               |
| Xantusia vigilis<br>sierrae | Sierra night lizard    |          | G5T1           | S1            | None     | None | CDFW:SSC<br>USFS:S  | Yes               | Yes           |

## SCINCIDAE (skinks)

| Scientific Name                         | Common Name    | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status  | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------|----------------|----------|----------------|---------------|------|------|------------------|-------------------|---------------|
| Plestiodon skiltonianus interparietalis | Coronado skink |          | G5T5           | S2S3          | None | None | BLM:S<br>CDFW:WL | Yes               |               |

### **TEIIDAE** (whiptails and relatives)

| Scientific Name            | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|----------------------------|-----------------------------|----------|----------------|---------------|------|------|------------------------------|-------------------|---------------|
| Aspidoscelis<br>hyperythra | orange-throated<br>whiptail |          | G5             | S2S3          | None | None | CDFW:WL<br>IUCN:LC<br>USFS:S | Yes               |               |

January 5, 2023 Page 56 of 116

| Scientific Name                   | Common Name      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Aspidoscelis tigris<br>stejnegeri | coastal whiptail |          | G5T5           | S3            | None | None | CDFW:SSC        | Yes               |               |

## **ANGUIDAE** (alligator lizards)

| Scientific Name     | Common Name               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|---------------------|---------------------------|----------|----------------|---------------|------|------|----------------------------------------|-------------------|---------------|
| Elgaria panamintina | Panamint alligator lizard |          | G3             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:VU<br>USFS:S | Yes               |               |

## **ANNIELLIDAE** (legless lizards)

| Scientific Name         | Common Name                        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA                    | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|-------------------------|------------------------------------|----------|----------------|---------------|------|-------------------------|--------------------|-------------------|---------------|
| Anniella<br>alexanderae | Temblor legless lizard             |          | G1             | S1            | None | Candidate<br>Endangered | CDFW:SSC           | Yes               | Yes           |
| Anniella campi          | Southern Sierra<br>legless lizard  |          | G1G2           | S2            | None | None                    | CDFW:SSC<br>USFS:S | Yes               | Yes           |
| Anniella grinnelli      | Bakersfield legless lizard         |          | G2G3           | S2S3          | None | None                    | CDFW:SSC           | Yes               | Yes           |
| Anniella pulchra        | Northern California legless lizard |          | G3             | S2S3          | None | None                    | CDFW:SSC<br>USFS:S | Yes               | Yes           |
| Anniella spp.           | California legless lizard          |          | G3G4           | S3S4          | None | None                    | CDFW:SSC           | Yes               | Yes           |
| Anniella stebbinsi      | Southern California legless lizard |          | G3             | S3            | None | None                    | CDFW:SSC<br>USFS:S | Yes               | Yes           |

January 5, 2023 Page 57 of 116

## **HELODERMATIDAE** (venomous lizards)

| Scientific Name             | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|-----------------------------|---------------------|----------|----------------|---------------|------|------|-------------------|-------------------|---------------|
| Heloderma suspectum cinctum | banded Gila monster |          | G4T4           | S1            | None | None | BLM:S<br>CDFW:SSC | Yes               | Yes           |

## **BOIDAE** (boas)

| Scientific Name   | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|-------------------|---------------------|----------|----------------|---------------|------|------------|-------------------|-------------------|---------------|
| Charina umbratica | southern rubber boa |          | G2G3           | S2S3          | None | Threatened | IUCN:VU<br>USFS:S | Yes               |               |

## **COLUBRIDAE** (egg-laying snakes)

| Scientific Name                      | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------------------|-------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Arizona elegans occidentalis         | California glossy snake       |          | G5T2           | S2            | None | None | CDFW:SSC        | Yes               |               |
| Diadophis<br>punctatus<br>modestus   | San Bernardino ringneck snake |          | G5T2T3         | S2?           | None | None | USFS:S          | Yes               |               |
| Diadophis<br>punctatus regalis       | regal ringneck<br>snake       |          | G5TNR          | S2            | None | None | CDFW:SSC        | Yes               |               |
| Diadophis<br>punctatus similis       | San Diego ringneck snake      |          | G5T4           | S2?           | None | None | USFS:S          | Yes               |               |
| Masticophis<br>flagellum<br>ruddocki | San Joaquin<br>coachwhip      |          | G5T2T3         | S3            | None | None | CDFW:SSC        | Yes               |               |
| Masticophis<br>fuliginosus           | Baja California<br>coachwhip  |          | G5             | S1S2          | None | None | CDFW:SSC        | Yes               |               |

January 5, 2023 Page 58 of 116

| Scientific Name                         | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------|-------------------------------|----------|----------------|---------------|------------|------------|-----------------|-------------------|---------------|
| Masticophis<br>lateralis<br>euryxanthus | Alameda<br>whipsnake          |          | G4T2           | S2            | Threatened | Threatened |                 | Yes               |               |
| Pituophis catenifer pumilus             | Santa Cruz Island gophersnake |          | G5T1T2         | S1?           | None       | None       | CDFW:WL         | No                |               |
| Salvadora<br>hexalepis<br>virgultea     | coast patch-<br>nosed snake   |          | G5T4           | S3            | None       | None       | CDFW:SSC        | Yes               |               |

## NATRICIDAE (live-bearing snakes)

| Scientific Name                   | Common Name                | Comments                                                                        | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|----------------------------|---------------------------------------------------------------------------------|----------------|---------------|------------|------------|----------------------------------------|-------------------|---------------|
| Thamnophis<br>gigas               | giant<br>gartersnake       |                                                                                 | G2             | S2            | Threatened | Threatened | IUCN:VU                                | Yes               |               |
| Thamnophis<br>hammondii           | two-striped<br>gartersnake |                                                                                 | G4             | S3S4          | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Thamnophis<br>hammondii pop.<br>1 | Santa Catalina gartersnake |                                                                                 | G4T1?          | S1            | None       | None       |                                        | No                |               |
| Thamnophis<br>sirtalis pop. 1     | south coast<br>gartersnake | Coastal plain from Ventura Co. to San Diego Co., from sea level to about 850 m. | G5T1T2         | S1S2          | None       | None       | CDFW:SSC                               | Yes               | Yes           |

Page 59 of 116 January 5, 2023

| Scientific Name                       | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------------------|------------------------------|----------|----------------|---------------|------------|------------|-----------------|-------------------|---------------|
| Thamnophis<br>sirtalis<br>tetrataenia | San Francisco<br>gartersnake |          | G5T2Q          | S2            | Endangered | Endangered | CDFW:FP         | Yes               |               |

# VIPERIIDAE (vipers)

| Scientific Name | Common Name             | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|-----------------|-------------------------|----------|----------------|---------------|------|------|-------------------------------|-------------------|---------------|
| Crotalus ruber  | red-diamond rattlesnake |          | G4             | S3            | None | None | CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |

Page 60 of 116 January 5, 2023

**Birds** 

### **ANATIDAE** (ducks, geese, and swans)

| Scientific Name                  | Common Name                          | Comments            | Global<br>Rank | State<br>Rank | ESA      | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|----------------------------------|--------------------------------------|---------------------|----------------|---------------|----------|------|---------------------|-------------------|---------------|
| Anser albifrons elgasi           | tule greater white-<br>fronted goose | Wintering           | G5T3           | S3            | None     | None | CDFW:SSC            | No                |               |
| Aythya americana                 | redhead                              | Nesting             | G5             | S3S4          | None     | None | CDFW:SSC<br>IUCN:LC | No                |               |
| Aythya valisineria               | canvasback                           | Nesting             | G5             | S2            | None     | None | IUCN:LC             | No                |               |
| Branta bernicla                  | brant                                | Wintering & staging | G5             | S2            | None     | None | CDFW:SSC<br>IUCN:LC | No                |               |
| Branta hutchinsii<br>leucopareia | cackling (=Aleutian<br>Canada) goose | Wintering           | G5T3           | S3            | Delisted | None | CDFW:WL             | Yes               |               |
| Bucephala islandica              | Barrow's goldeneye                   | Nesting             | G5             | S1            | None     | None | CDFW:SSC<br>IUCN:LC | No                |               |
| Dendrocygna bicolor              | fulvous whistling-duck               | Nesting             | G5             | S1            | None     | None | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Histrionicus<br>histrionicus     | harlequin duck                       | Nesting             | G4             | S1            | None     | None | CDFW:SSC<br>IUCN:LC | Yes               |               |

## PHASIANIDAE (grouse and ptarmigan)

| Scientific Name              | Common Name         | Comments       | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|------------------------------|---------------------|----------------|----------------|---------------|------|------|----------------------------------------|-------------------|---------------|
| Bonasa umbellus              | ruffed grouse       |                | G5             | S3S4          | None | None | CDFW:WL<br>IUCN:LC                     | Yes               |               |
| Centrocercus<br>urophasianus | greater sage-grouse | Nesting & leks | G3G4           | S2S3          | None | None | BLM:S<br>CDFW:SSC<br>IUCN:NT<br>USFS:S | Yes               | Yes           |

January 5, 2023 Page 61 of 116

| Scientific Name                            | Common Name                       | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------------------------|-----------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Dendragapus<br>fuliginosus howardi         | Mount Pinos sooty grouse          |          | G5T2T3         | S2S3          | None | None | CDFW:SSC        | Yes               | Yes           |
| Tympanuchus<br>phasianellus<br>columbianus | Columbian sharp-<br>tailed grouse |          | G5T3           | SX            | None | None | CDFW:SSC        | No                |               |

## ODONTOPHORIDAE (partridge and quail)

| Scientific Name                     | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-------------------------------------|------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Callipepla californica catalinensis | Catalina California<br>quail |          | G5T2           | S2            | None | None | CDFW:SSC        | No                |               |

### **GAVIIDAE** (loons)

| Scientific Name | Common Name | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------|-------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Gavia immer     | common loon | Nesting  | G5             | S1            | None | None | CDFW:SSC<br>IUCN:LC | No                |               |

### **DIOMEDEIDAE** (albatrosses)

| Scientific Name      | Common Name               | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status                  | Records in CNDDB? | End<br>Notes? |
|----------------------|---------------------------|----------|----------------|---------------|------------|------|----------------------------------|-------------------|---------------|
| Phoebastria albatrus | short-tailed<br>albatross |          | G1             | S1            | Endangered | None | CDFW:SSC<br>IUCN:VU<br>NABCI:RWL | No                |               |

January 5, 2023 Page 62 of 116

### **HYDROBATIDAE** (storm petrels)

| Scientific Name         | Common Name                  | Comments       | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                                        | Records in CNDDB? | End<br>Notes? |
|-------------------------|------------------------------|----------------|----------------|---------------|------|------|--------------------------------------------------------|-------------------|---------------|
| Hydrobates furcatus     | fork-tailed storm-<br>petrel | Nesting colony | G5             | S1            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC                           | Yes               |               |
| Hydrobates<br>homochroa | ashy storm-petrel            | Nesting colony | G2             | S2            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:EN<br>NABCI:RWL<br>USFWS:BCC | Yes               |               |
| Hydrobates melania      | black storm-petrel           | Nesting colony | G3G4           | S1            | None | None | CDFW:SSC<br>IUCN:LC<br>NABCI:YWL<br>USFWS:BCC          | Yes               |               |

## PELECANIIDAE (pelicans)

| Scientific Name                           | Common Name              | Comments                         | Global<br>Rank | State<br>Rank | ESA      | CESA     | Other<br>Status                  | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|--------------------------|----------------------------------|----------------|---------------|----------|----------|----------------------------------|-------------------|---------------|
| Pelecanus<br>erythrorhynchos              | American white pelican   | Nesting colony                   | G4             | S1S2          | None     | None     | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC | Yes               |               |
| Pelecanus<br>occidentalis<br>californicus | California brown pelican | Nesting colony & communal roosts | G4T3T4         | S3            | Delisted | Delisted | BLM:S<br>CDFW:FP<br>USFS:S       | Yes               |               |

January 5, 2023 Page 63 of 116

### PHALACROCORACIDAE (cormorants)

| Scientific Name     | Common Name              | Comments       | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|---------------------|--------------------------|----------------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Nannopterum auritum | double-crested cormorant | Nesting colony | G5             | S4            | None | None | CDFW:WL<br>IUCN:LC | Yes               |               |

#### ARDEIDAE (herons, egrets, and bitterns)

| Scientific Name       | Common Name               | Comments       | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------------|---------------------------|----------------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Ardea alba            | great egret               | Nesting colony | G5             | S4            | None | None | CDF:S<br>IUCN:LC    | Yes               |               |
| Ardea herodias        | great blue heron          | Nesting colony | G5             | S4            | None | None | CDF:S<br>IUCN:LC    | Yes               |               |
| Botaurus lentiginosus | American bittern          |                | G5             | S3S4          | None | None | IUCN:LC             | No                |               |
| Egretta thula         | snowy egret               | Nesting colony | G5             | S4            | None | None | IUCN:LC             | Yes               |               |
| Ixobrychus exilis     | least bittern             | Nesting        | G4G5           | S2            | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Nycticorax nycticorax | black-crowned night heron | Nesting colony | G5             | S4            | None | None | IUCN:LC             | Yes               |               |

#### THRESKIORNITHIDAE (ibises and spoonbills)

| Scientific Name | Common Name      | Comments       | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|-----------------|------------------|----------------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Plegadis chihi  | white-faced ibis | Nesting colony | G5             | S3S4          | None | None | CDFW:WL<br>IUCN:LC | Yes               |               |

January 5, 2023 Page 64 of 116

### **CICONIIDAE** (storks)

| Scientific Name    | Common Name | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|--------------------|-------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Mycteria americana | wood stork  |          | G4             | S1            | None | None | CDFW:SSC<br>IUCN:LC | No                |               |

#### **CATHARTIDAE** (New World vultures)

| Scientific Name            | Common Name          | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                          | Records in CNDDB? | End<br>Notes? |
|----------------------------|----------------------|----------|----------------|---------------|------------|------------|------------------------------------------|-------------------|---------------|
| Gymnogyps<br>californianus | California<br>condor |          | G1             | S1            | Endangered | Endangered | CDF:S<br>CDFW:FP<br>IUCN:CR<br>NABCI:RWL | Yes               |               |

#### PANDIONIDAE (ospreys)

| Scientific Name   | Common Name | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status             | Records in CNDDB? | End<br>Notes? |
|-------------------|-------------|----------|----------------|---------------|------|------|-----------------------------|-------------------|---------------|
| Pandion haliaetus | osprey      | Nesting  | G5             | S4            | None | None | CDF:S<br>CDFW:WL<br>IUCN:LC | Yes               |               |

#### ACCIPITRIDAE (hawks, kites, harriers, and eagles)

| Scientific Na  | me    | Common Name   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|----------------|-------|---------------|----------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Accipiter coop | perii | Cooper's hawk | Nesting  | G5             | S4            | None | None | CDFW:WL<br>IUCN:LC | Yes               |               |

January 5, 2023 Page 65 of 116

| Scientific Name             | Common Name           | Comments              | Global<br>Rank | State<br>Rank | ESA      | CESA       | Other<br>Status                                 | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-----------------------|-----------------------|----------------|---------------|----------|------------|-------------------------------------------------|-------------------|---------------|
| Accipiter gentilis          | northern goshawk      | Nesting               | G5             | S3            | None     | None       | BLM:S<br>CDF:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Accipiter striatus          | sharp-shinned<br>hawk | Nesting               | G5             | S4            | None     | None       | CDFW:WL<br>IUCN:LC                              | Yes               |               |
| Aquila chrysaetos           | golden eagle          | Nesting and wintering | G5             | S3            | None     | None       | BLM:S<br>CDF:S<br>CDFW:FP<br>CDFW:WL<br>IUCN:LC | Yes               |               |
| Buteo regalis               | ferruginous hawk      | Wintering             | G4             | S3S4          | None     | None       | CDFW:WL<br>IUCN:LC                              | Yes               |               |
| Buteo swainsoni             | Swainson's hawk       | Nesting               | G5             | S3            | None     | Threatened | BLM:S<br>IUCN:LC                                | Yes               |               |
| Circus hudsonius            | northern harrier      | Nesting               | G5             | S3            | None     | None       | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC                | Yes               | Yes           |
| Elanus leucurus             | white-tailed kite     | Nesting               | G5             | S3S4          | None     | None       | BLM:S<br>CDFW:FP<br>IUCN:LC                     | Yes               |               |
| Haliaeetus<br>leucocephalus | bald eagle            | Nesting and wintering | G5             | S3            | Delisted | Endangered | BLM:S<br>CDF:S<br>CDFW:FP<br>IUCN:LC<br>USFS:S  | Yes               |               |
| Parabuteo<br>unicinctus     | Harris' hawk          | Nesting               | G5             | S1            | None     | None       | CDFW:WL<br>IUCN:LC                              | No                |               |

January 5, 2023 Page 66 of 116

## **FALCONIDAE** (falcons)

| Scientific Name         | Common Name               | Comments  | Global<br>Rank | State<br>Rank | ESA      | CESA     | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|-------------------------|---------------------------|-----------|----------------|---------------|----------|----------|--------------------|-------------------|---------------|
| Falco columbarius       | merlin                    | Wintering | G5             | S3S4          | None     | None     | CDFW:WL<br>IUCN:LC | Yes               |               |
| Falco mexicanus         | prairie falcon            | Nesting   | G5             | S4            | None     | None     | CDFW:WL<br>IUCN:LC | Yes               |               |
| Falco peregrinus anatum | American peregrine falcon | Nesting   | G4T4           | S3S4          | Delisted | Delisted | CDF:S<br>CDFW:FP   | Yes               |               |

### RALLIDAE (rails, coots, and gallinules)

| Scientific Name                           | Common<br>Name                 | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                                         | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|--------------------------------|----------|----------------|---------------|------------|------------|---------------------------------------------------------|-------------------|---------------|
| Coturnicops<br>noveboracensis             | yellow rail                    |          | G4             | S1S2          | None       | None       | CDFW:SSC<br>IUCN:LC<br>NABCI:RWL<br>USFS:S<br>USFWS:BCC | Yes               |               |
| Laterallus<br>jamaicensis<br>coturniculus | California<br>black rail       |          | G3T1           | S1            | None       | Threatened | BLM:S<br>CDFW:FP<br>IUCN:EN<br>NABCI:RWL                | Yes               | Yes           |
| Rallus obsoletus<br>levipes               | light-footed<br>Ridgway's rail |          | G3T1T2         | S1            | Endangered | Endangered | CDFW:FP<br>NABCI:RWL                                    | Yes               | Yes           |
| Rallus obsoletus obsoletus                | California<br>Ridgway's rail   |          | G3T1           | S1            | Endangered | Endangered | CDFW:FP<br>NABCI:RWL                                    | Yes               | Yes           |
| Rallus obsoletus yumanensis               | Yuma<br>Ridgway's rail         |          | G3T3           | S1S2          | Endangered | Threatened | CDFW:FP<br>NABCI:RWL                                    | Yes               | Yes           |

January 5, 2023 Page 67 of 116

## **GRUIDAE** (cranes)

| Scientific Name                | Common Name            | Comments            | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status            | Records in CNDDB? | End<br>Notes? |
|--------------------------------|------------------------|---------------------|----------------|---------------|------|------------|----------------------------|-------------------|---------------|
| Antigone canadensis canadensis | lesser sandhill crane  | Wintering           | G5T4           | S3S4          | None | None       | CDFW:SSC                   | No                |               |
| Antigone canadensis tabida     | greater sandhill crane | Nesting & wintering | G5T5           | S2            | None | Threatened | BLM:S<br>CDFW:FP<br>USFS:S | Yes               |               |

#### **CHARADRIIDAE** (plovers and relatives)

| Scientific Name            | Common Name             | Comments  | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status                                        | Records in CNDDB? | End<br>Notes? |
|----------------------------|-------------------------|-----------|----------------|---------------|------------|------|--------------------------------------------------------|-------------------|---------------|
| Charadrius<br>montanus     | mountain plover         | Wintering | G3             | S2S3          | None       | None | BLM:S<br>CDFW:SSC<br>IUCN:NT<br>NABCI:RWL<br>USFWS:BCC | Yes               | Yes           |
| Charadrius nivosus nivosus | western snowy<br>plover | Nesting   | G3T3           | S3            | Threatened | None | CDFW:SSC<br>NABCI:RWL                                  | Yes               | Yes           |

### **SCOLOPACIDAE** (sandpipers and relatives)

| Scientific Name     | Common Name        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                 | Records in CNDDB? | End<br>Notes? |
|---------------------|--------------------|----------|----------------|---------------|------|------|---------------------------------|-------------------|---------------|
| Numenius americanus | long-billed curlew | Nesting  | G5             | S2            | None | None | CDFW:WL<br>IUCN:LC<br>NABCI:YWL | No                |               |

January 5, 2023 Page 68 of 116

## LARIDAE (gulls and terns)

| Scientific Name               | Common<br>Name           | Comments          | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                               | Records in CNDDB? | End<br>Notes? |
|-------------------------------|--------------------------|-------------------|----------------|---------------|------------|------------|-----------------------------------------------|-------------------|---------------|
| Chlidonias niger              | black tern               | Nesting colony    | G4G5           | S2            | None       | None       | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC              | Yes               |               |
| Gelochelidon<br>nilotica      | gull-billed tern         | Nesting colony    | G5             | S1            | None       | None       | CDFW:SSC<br>IUCN:LC<br>NABCI:YWL<br>USFWS:BCC | Yes               | Yes           |
| Hydroprogne<br>caspia         | Caspian tern             | Nesting colony    | G5             | S4            | None       | None       | IUCN:LC                                       | Yes               | Yes           |
| Larus<br>californicus         | California gull          | Nesting colony    | G5             | S4            | None       | None       | CDFW:WL<br>IUCN:LC<br>USFWS:BCC               | Yes               |               |
| Leucophaeus<br>atricilla      | laughing gull            | Nesting colony    | G5             | S1            | None       | None       | CDFW:WL<br>IUCN:LC                            | No                |               |
| Rynchops niger                | black skimmer            | Nesting<br>colony | G5             | S2            | None       | None       | CDFW:SSC<br>IUCN:LC<br>NABCI:YWL<br>USFWS:BCC | Yes               |               |
| Sternula<br>antillarum browni | California<br>least tern | Nesting colony    | G4T2T3Q        | S2            | Endangered | Endangered | CDFW:FP<br>NABCI:RWL                          | Yes               | Yes           |
| Thalasseus<br>elegans         | elegant tern             | Nesting colony    | G2             | S3            | None       | None       | CDFW:WL<br>IUCN:NT<br>USFWS:BCC               | No                | Yes           |

January 5, 2023 Page 69 of 116

## **ALCIDAE** (auklets, puffins, and relatives)

| Scientific Name              | Common<br>Name        | Comments       | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                            | Records in CNDDB? | End<br>Notes? |
|------------------------------|-----------------------|----------------|----------------|---------------|------------|------------|--------------------------------------------|-------------------|---------------|
| Brachyramphus<br>marmoratus  | marbled<br>murrelet   | Nesting        | G3             | S2            | Threatened | Endangered | CDF:S<br>IUCN:EN<br>NABCI:RWL              | Yes               |               |
| Cerorhinca<br>monocerata     | rhinoceros<br>auklet  | Nesting colony | G5             | S3            | None       | None       | CDFW:WL<br>IUCN:LC                         | Yes               |               |
| Fratercula cirrhata          | tufted puffin         | Nesting colony | G5             | S1S2          | None       | None       | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC           | Yes               |               |
| Ptychoramphus<br>aleuticus   | Cassin's auklet       | Nesting colony | G4             | S3            | None       | None       | CDFW:SSC<br>IUCN:NT<br>USFWS:BCC           | No                |               |
| Synthliboramphus<br>scrippsi | Scripps's<br>murrelet | Nesting colony | G2             | S2            | None       | Threatened | BLM:S<br>IUCN:VU<br>NABCI:RWL<br>USFWS:BCC | Yes               | Yes           |

### **CUCULIDAE** (cuckoos and relatives)

| Scientific Name                        | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|----------------------------------------|----------------------------------|----------|----------------|---------------|------------|------------|------------------------------|-------------------|---------------|
| Coccyzus<br>americanus<br>occidentalis | western yellow-<br>billed cuckoo | Nesting  | G5T2T3         | S1            | Threatened | Endangered | BLM:S<br>NABCI:RWL<br>USFS:S | Yes               |               |

January 5, 2023 Page 70 of 116

## STRIGIDAE (owls)

| Scientific<br>Name                    | Common<br>Name            | Comments                                        | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                           | Records in CNDDB? | End<br>Notes? |
|---------------------------------------|---------------------------|-------------------------------------------------|----------------|---------------|------------|------------|-------------------------------------------|-------------------|---------------|
| Asio flammeus                         | short-eared owl           | Nesting                                         | G5             | S3            | None       | None       | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC          | Yes               |               |
| Asio otus                             | long-eared owl            | Nesting                                         | G5             | S3?           | None       | None       | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC          | Yes               |               |
| Athene<br>cunicularia                 | burrowing owl             | Burrow<br>sites &<br>some<br>wintering<br>sites | G4             | S3            | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFWS:BCC | Yes               | Yes           |
| Micrathene<br>whitneyi                | elf owl                   | Nesting                                         | G5             | S1            | None       | Endangered | BLM:S<br>IUCN:LC                          | Yes               |               |
| Psiloscops<br>flammeolus              | flammulated<br>owl        | Nesting                                         | G4             | S2S4          | None       | None       | IUCN:LC<br>NABCI:YWL<br>USFWS:BCC         | Yes               |               |
| Strix nebulosa                        | great gray owl            | Nesting                                         | G5             | S1            | None       | Endangered | CDF:S<br>IUCN:LC<br>USFS:S                | Yes               |               |
| Strix<br>occidentalis<br>caurina      | northern<br>spotted owl   |                                                 | G3G4T3         | S2            | Threatened | Threatened | CDF:S<br>NABCI:YWL                        | No                | Yes           |
| Strix<br>occidentalis<br>occidentalis | California<br>spotted owl |                                                 | G3G4T2T3       | S3            | None       | None       | BLM:S<br>CDFW:SSC<br>USFS:S<br>USFWS:BCC  | No                | Yes           |

January 5, 2023 Page 71 of 116

### APODIDAE (swifts)

| Scientific Name   | Common Name  | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                               | Records in CNDDB? | End<br>Notes? |
|-------------------|--------------|----------|----------------|---------------|------|------|-----------------------------------------------|-------------------|---------------|
| Chaetura vauxi    | Vaux's swift | Nesting  | G5             | S2S3          | None | None | CDFW:SSC<br>IUCN:LC<br>USFWS:BCC              | No                |               |
| Cypseloides niger | black swift  | Nesting  | G4             | S2            | None | None | CDFW:SSC<br>IUCN:VU<br>NABCI:YWL<br>USFWS:BCC | Yes               |               |

## TROCHILIDAE (hummingbirds)

| Scientific Name   | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                   | Records in CNDDB? | End<br>Notes? |
|-------------------|---------------------|----------|----------------|---------------|------|------|-----------------------------------|-------------------|---------------|
| Calypte costae    | Costa's hummingbird | Nesting  | G5             | S4            | None | None | IUCN:LC<br>USFWS:BCC              | No                |               |
| Selasphorus rufus | rufous hummingbird  | Nesting  | G4             | S1S2          | None | None | IUCN:NT<br>NABCI:YWL<br>USFWS:BCC | No                |               |

### PICIDAE (woodpeckers)

| Scientific Name        | Common Name       | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status                            | Records in CNDDB? | End<br>Notes? |
|------------------------|-------------------|----------|----------------|---------------|------|------------|--------------------------------------------|-------------------|---------------|
| Colaptes<br>chrysoides | gilded flicker    |          | G5             | S1            | None | Endangered | BLM:S<br>IUCN:LC<br>NABCI:YWL<br>USFWS:BCC | Yes               |               |
| Melanerpes lewis       | Lewis' woodpecker | Nesting  | G4             | S4            | None | None       | IUCN:LC<br>NABCI:YWL<br>USFWS:BCC          | Yes               |               |

January 5, 2023 Page 72 of 116

| Scientific Name           | Common Name                | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|---------------------------|----------------------------|----------|----------------|---------------|------|------------|-------------------------------|-------------------|---------------|
| Melanerpes<br>uropygialis | Gila woodpecker            |          | G5             | S1            | None | Endangered | BLM:S<br>IUCN:LC<br>USFWS:BCC | Yes               |               |
| Picoides arcticus         | black-backed<br>woodpecker |          | G5             | S2            | None | None       | IUCN:LC                       | Yes               |               |
| Sphyrapicus ruber         | red-breasted<br>sapsucker  | Nesting  | G5             | S4            | None | None       | IUCN:LC                       | Yes               |               |

## **TYRANNIDAE** (tyrant flycatchers)

| Scientific Name                 | Common Name                       | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                               | Records in CNDDB? | End<br>Notes? |
|---------------------------------|-----------------------------------|----------|----------------|---------------|------------|------------|-----------------------------------------------|-------------------|---------------|
| Contopus<br>cooperi             | olive-sided<br>flycatcher         | Nesting  | G4             | S3            | None       | None       | CDFW:SSC<br>IUCN:NT<br>NABCI:YWL<br>USFWS:BCC | Yes               |               |
| Empidonax<br>traillii           | willow flycatcher                 | Nesting  | G5             | S1S2          | None       | Endangered | IUCN:LC<br>USFS:S                             | Yes               | Yes           |
| Empidonax<br>traillii brewsteri | little willow flycatcher          | Nesting  | G5T3T4         | S1S2          | None       | Endangered |                                               | Yes               | Yes           |
| Empidonax<br>traillii extimus   | southwestern<br>willow flycatcher | Nesting  | G5T2           | S1            | Endangered | Endangered | NABCI:RWL                                     | Yes               | Yes           |
| Myiarchus<br>tyrannulus         | brown-crested flycatcher          | Nesting  | G5             | S3            | None       | None       | CDFW:WL<br>IUCN:LC                            | Yes               |               |
| Pyrocephalus<br>rubinus         | vermilion<br>flycatcher           | Nesting  | G5             | S2S3          | None       | None       | CDFW:SSC<br>IUCN:LC                           | Yes               |               |

January 5, 2023 Page 73 of 116

## LANIIDAE (shrikes)

| Scientific Name                | Common Name                    | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status       | Records in CNDDB? | End<br>Notes? |
|--------------------------------|--------------------------------|----------|----------------|---------------|------------|------|-----------------------|-------------------|---------------|
| Lanius Iudovicianus            | loggerhead shrike              | Nesting  | G4             | S4            | None       | None | CDFW:SSC<br>IUCN:NT   | Yes               |               |
| Lanius Iudovicianus anthonyi   | Island loggerhead shrike       |          | G4T1           | S1            | None       | None | CDFW:SSC<br>NABCI:RWL | No                |               |
| Lanius Iudovicianus<br>mearnsi | San Clemente loggerhead shrike |          | G4T1Q          | S2            | Endangered | None | CDFW:SSC<br>NABCI:RWL | Yes               | Yes           |

### VIREONIDAE (vireos)

| Scientific Name          | Common Name             | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                                     | Records in CNDDB? | End<br>Notes? |
|--------------------------|-------------------------|----------|----------------|---------------|------------|------------|-----------------------------------------------------|-------------------|---------------|
| Vireo bellii<br>arizonae | Arizona Bell's vireo    | Nesting  | G5T4           | S1S2          | None       | Endangered | BLM:S                                               | Yes               | Yes           |
| Vireo bellii<br>pusillus | least Bell's vireo      | Nesting  | G5T2           | S2            | Endangered | Endangered | NABCI:YWL                                           | Yes               | Yes           |
| Vireo huttoni<br>unitti  | Catalina Hutton's vireo |          | G5T2?          | S2            | None       | None       | CDFW:SSC                                            | No                |               |
| Vireo vicinior           | gray vireo              | Nesting  | G5             | S2            | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>NABCI:YWL<br>USFS:S | Yes               |               |

### **CORVIDAE** (jays, crows, and magpies)

| Scientific Name             | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------|--------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Aphelocoma californica cana | Eagle Mountain scrub-jay |          | G5T3           | S3            | None | None | CDFW:WL         | No                |               |

January 5, 2023 Page 74 of 116

| Scientific Name      | Common Name          | Comments                  | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                   | Records in CNDDB? | End<br>Notes? |
|----------------------|----------------------|---------------------------|----------------|---------------|------|------|-----------------------------------|-------------------|---------------|
| Aphelocoma insularis | Island scrub-jay     |                           | G1             | S1            | None | None | IUCN:NT<br>NABCI:RWL<br>USFWS:BCC | No                |               |
| Pica nuttalli        | yellow-billed magpie | Nesting & communal roosts | G3G4           | S3S4          | None | None | IUCN:VU<br>NABCI:YWL<br>USFWS:BCC | No                |               |

# ALAUDIDAE (larks)

| Scientific Name            | Common Name            | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|----------------------------|------------------------|----------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Eremophila alpestris actia | California horned lark |          | G5T4Q          | S4            | None | None | CDFW:WL<br>IUCN:LC | Yes               |               |

### **HIRUNDINIDAE** (swallows)

| Scientific Name | Common Name   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------|---------------|----------|----------------|---------------|------|------------|---------------------|-------------------|---------------|
| Progne subis    | purple martin | Nesting  | G5             | S3            | None | None       | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Riparia riparia | bank swallow  | Nesting  | G5             | S2            | None | Threatened | BLM:S<br>IUCN:LC    | Yes               |               |

### **PARIDAE** (titmice and relatives)

| Scientific Name      | Common Name               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|----------------------|---------------------------|----------|----------------|---------------|------|------|--------------------|-------------------|---------------|
| Poecile atricapillus | black-capped<br>chickadee |          | G5             | S3            | None | None | CDFW:WL<br>IUCN:LC | No                |               |

January 5, 2023 Page 75 of 116

### TROGLODYTIDAE (wrens)

| Scientific Name                                    | Common Name                   | Comments                                  | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                 | Records in CNDDB? | End<br>Notes? |
|----------------------------------------------------|-------------------------------|-------------------------------------------|----------------|---------------|------|------|---------------------------------|-------------------|---------------|
| Campylorhynchus<br>brunneicapillus<br>sandiegensis | coastal cactus wren           | San Diego &<br>Orange<br>Counties<br>only | G5T3Q          | S2            | None | None | CDFW:SSC<br>USFS:S<br>USFWS:BCC | Yes               | Yes           |
| Cistothorus palustris clarkae                      | Clark's marsh wren            |                                           | G5T2T3         | S2            | None | None | CDFW:SSC                        | No                |               |
| Thryomanes bewickii leucophrys                     | San Clemente<br>Bewick's wren |                                           | G5TX           | SX            | None | None | CDFW:SSC                        | No                |               |

### POLIOPTILIDAE (gnatcatchers)

| Scientific Name                          | Common Name                       | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status       | Records in CNDDB? | End<br>Notes? |
|------------------------------------------|-----------------------------------|----------|----------------|---------------|------------|------|-----------------------|-------------------|---------------|
| Polioptila<br>californica<br>californica | coastal California<br>gnatcatcher |          | G4G5T3Q        | S2            | Threatened | None | CDFW:SSC<br>NABCI:YWL | Yes               | Yes           |
| Polioptila<br>melanura                   | black-tailed<br>gnatcatcher       |          | G5             | S3S4          | None       | None | CDFW:WL<br>IUCN:LC    | Yes               |               |

#### MIMIDAE (mockingbirds and thrashers)

| Scientific Name    | Common Name        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                                        | Records in CNDDB? | End<br>Notes? |
|--------------------|--------------------|----------|----------------|---------------|------|------|--------------------------------------------------------|-------------------|---------------|
| Toxostoma bendirei | Bendire's thrasher |          | G4             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:VU<br>NABCI:RWL<br>USFWS:BCC | Yes               |               |

January 5, 2023 Page 76 of 116

| Scientific Name    | Common Name         | Comments | Global<br>Rank | State<br>Rank |      | CESA | Other<br>Status                                        | Records in CNDDB? | End<br>Notes? |
|--------------------|---------------------|----------|----------------|---------------|------|------|--------------------------------------------------------|-------------------|---------------|
| Toxostoma crissale | Crissal thrasher    |          | G5             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC                           | Yes               |               |
| Toxostoma lecontei | Le Conte's thrasher |          | G4             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>NABCI:RWL<br>USFWS:BCC | Yes               | Yes           |

# PASSERELLIDAE (sparrows)

| Scientific Name                    | Common<br>Name                                     | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status       | Records in CNDDB? | End<br>Notes? |
|------------------------------------|----------------------------------------------------|----------|----------------|---------------|------------|------|-----------------------|-------------------|---------------|
| Aimophila<br>ruficeps<br>canescens | southern California rufous- crowned sparrow        |          | G5T3           | S3            | None       | None | CDFW:WL               | Yes               |               |
| Aimophila<br>ruficeps obscura      | Santa Cruz<br>Island rufous-<br>crowned<br>sparrow |          | G5T2T3         | S2            | None       | None | CDFW:SSC              | No                |               |
| Ammodramus<br>savannarum           | grasshopper<br>sparrow                             | Nesting  | G5             | S3            | None       | None | CDFW:SSC<br>IUCN:LC   | Yes               |               |
| Artemisiospiza<br>belli belli      | Bell's sage sparrow                                |          | G5T2T3         | S3            | None       | None | CDFW:WL               | Yes               | Yes           |
| Artemisiospiza<br>belli clementeae | San Clemente sage sparrow                          |          | G5T2Q          | S2            | Threatened | None | CDFW:SSC<br>NABCI:YWL | Yes               | Yes           |
| Junco hyemalis<br>caniceps         | gray-headed<br>junco                               | Nesting  | G5T5           | S1            | None       | None | CDFW:WL               | Yes               |               |

Page 77 of 116 January 5, 2023

| Scientific Name                           | Common<br>Name                            | Comments  | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status       | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|-------------------------------------------|-----------|----------------|---------------|------------|------------|-----------------------|-------------------|---------------|
| Melospiza<br>melodia<br>graminea          | Channel Island song sparrow               |           | G5T1           | S1            | None       | None       | CDFW:SSC<br>USFWS:BCC | Yes               | Yes           |
| Melospiza<br>melodia<br>maxillaris        | Suisun song sparrow                       |           | G5T3           | S3            | None       | None       | CDFW:SSC              | Yes               |               |
| Melospiza<br>melodia pop. 1               | song sparrow<br>("Modesto"<br>population) |           | G5T3?Q         | S3?           | None       | None       | CDFW:SSC              | Yes               |               |
| Melospiza<br>melodia pusillula            | Alameda song sparrow                      |           | G5T2T3         | S2S3          | None       | None       | CDFW:SSC<br>USFWS:BCC | Yes               |               |
| Melospiza<br>melodia<br>samuelis          | San Pablo<br>song sparrow                 |           | G5T2           | S2            | None       | None       | CDFW:SSC<br>USFWS:BCC | Yes               |               |
| Melozone aberti                           | Abert's towhee                            |           | G3G4           | S4            | None       | None       | IUCN:LC               | No                |               |
| Melozone<br>crissalis<br>eremophilus      | Inyo California towhee                    |           | G4G5T2         | S2            | Threatened | Endangered | NABCI:RWL             | Yes               | Yes           |
| Passerculus<br>sandwichensis<br>alaudinus | Bryant's<br>savannah<br>sparrow           |           | G5T2T3         | S3            | None       | None       | CDFW:SSC              | No                |               |
| Passerculus<br>sandwichensis<br>beldingi  | Belding's<br>savannah<br>sparrow          |           | G5T3           | S3            | None       | Endangered | USFWS:BCC             | Yes               |               |
| Passerculus<br>sandwichensis<br>rostratus | large-billed<br>savannah<br>sparrow       | Wintering | G5T2T3Q        | S2            | None       | None       | CDFW:SSC              | No                |               |
| Pipilo maculatus clementae                | San Clemente spotted towhee               |           | G5T1T2         | S1S2          | None       | None       | CDFW:SSC              | No                |               |

January 5, 2023 Page 78 of 116

| Scientific Name                | Common<br>Name        | Comments  | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                    | Records in CNDDB? | End<br>Notes? |
|--------------------------------|-----------------------|-----------|----------------|---------------|------|------|------------------------------------|-------------------|---------------|
| Pooecetes<br>gramineus affinis | Oregon vesper sparrow | Wintering | G5T3?          | S2            | None | None | CDFW:SSC<br>NABCI:RWL<br>USFWS:BCC | No                |               |
| Spizella breweri               | Brewer's sparrow      | Nesting   | G5             | S4            | None | None | IUCN:LC                            | Yes               |               |

## ICTERIIDAE (yellow-breasted chats)

| Scientific Name | Common Name          | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------|----------------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Icteria virens  | yellow-breasted chat | Nesting  | G5             | S3            | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |

## ICTERIDAE (blackbirds)

| Scientific Name                | Common Name                | Comments       | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status                                        | Records in CNDDB? | End<br>Notes? |
|--------------------------------|----------------------------|----------------|----------------|---------------|------|------------|--------------------------------------------------------|-------------------|---------------|
| Agelaius phoeniceus aciculatus | Kern red-winged blackbird  |                | G5T1T2         | S1S2          | None | None       | CDFW:SSC                                               | No                |               |
| Agelaius tricolor              | tricolored<br>blackbird    | Nesting colony | G1G2           | S1S2          | None | Threatened | BLM:S<br>CDFW:SSC<br>IUCN:EN<br>NABCI:RWL<br>USFWS:BCC | Yes               |               |
| Xanthocephalus xanthocephalus  | yellow-headed<br>blackbird | Nesting        | G5             | S3            | None | None       | CDFW:SSC<br>IUCN:LC                                    | Yes               |               |

Page 79 of 116

### PARULIDAE (wood-warblers)

| Scientific Name             | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                              | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-------------------------------|----------|----------------|---------------|------|------|----------------------------------------------|-------------------|---------------|
| Geothlypis trichas sinuosa  | saltmarsh common yellowthroat |          | G5T3           | S3            | None | None | CDFW:SSC<br>USFWS:BCC                        | Yes               | Yes           |
| Leiothlypis luciae          | Lucy's warbler                | Nesting  | G5             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC                 | Yes               |               |
| Leiothlypis virginiae       | Virginia's warbler            | Nesting  | G5             | S2            | None | None | CDFW:WL<br>IUCN:LC<br>NABCI:YWL<br>USFWS:BCC | Yes               |               |
| Setophaga petechia          | yellow warbler                | Nesting  | G5             | S3S4          | None | None | CDFW:SSC<br>IUCN:LC                          | Yes               | Yes           |
| Setophaga petechia sonorana | Sonoran yellow warbler        | Nesting  | G5T2T3         | S2            | None | None | CDFW:SSC                                     | Yes               | Yes           |

## **CARDINALIDAE** (cardinals)

| Scientific Name       | Common Name       | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------------|-------------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Cardinalis cardinalis | northern cardinal |          | G5             | S1            | None | None | CDFW:WL<br>IUCN:LC  | Yes               |               |
| Piranga flava         | hepatic tanager   | Nesting  | G5             | S1            | None | None | CDFW:WL<br>IUCN:LC  | Yes               |               |
| Piranga rubra         | summer tanager    | Nesting  | G5             | S1            | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |

January 5, 2023 Page 80 of 116

## FRINGILLIDAE (finches and relatives)

| Scientific Name  | Common Name          | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                   | Records in CNDDB? | End<br>Notes? |
|------------------|----------------------|----------|----------------|---------------|------|------|-----------------------------------|-------------------|---------------|
| Spinus lawrencei | Lawrence's goldfinch | Nesting  | G3G4           | S4            | None | None | IUCN:LC<br>NABCI:YWL<br>USFWS:BCC | Yes               |               |

January 5, 2023 Page 81 of 116

## **Mammals**

## SORICIDAE (shrews)

| Scientific Name              | Common Name                               | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|------------------------------|-------------------------------------------|----------|----------------|---------------|------------|------|---------------------|-------------------|---------------|
| Sorex lyelli                 | Mount Lyell shrew                         |          | G3G4           | S3S4          | None       | None | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Sorex ornatus relictus       | Buena Vista Lake ornate shrew             |          | G5T1           | S1            | Endangered | None | CDFW:SSC            | Yes               |               |
| Sorex ornatus salarius       | Monterey shrew                            |          | G5T1T2         | S1S2          | None       | None | CDFW:SSC            | Yes               |               |
| Sorex ornatus salicornicus   | southern<br>California<br>saltmarsh shrew |          | G5T1?          | S1            | None       | None | CDFW:SSC            | Yes               |               |
| Sorex ornatus sinuosus       | Suisun shrew                              |          | G5T1T2Q        | S1S2          | None       | None | CDFW:SSC            | Yes               |               |
| Sorex ornatus<br>willetti    | Santa Catalina shrew                      |          | G5T1           | S1            | None       | None | CDFW:SSC            | Yes               |               |
| Sorex vagrans<br>halicoetes  | salt-marsh<br>wandering shrew             |          | G5T1           | S1            | None       | None | CDFW:SSC            | Yes               |               |
| Sorex vagrans<br>paludivagus | Monterey vagrant shrew                    |          | G5T1           | S2            | None       | None |                     | No                |               |

## TALPIDAE (moles)

| Scientific Name              | Common Name         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------------|---------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Scapanus latimanus insularis | Angel Island mole   |          | G5T1           | SH            | None | None |                 | Yes               |               |
| Scapanus latimanus parvus    | Alameda Island mole |          | G5T1Q          | SH            | None | None | CDFW:SSC        | Yes               |               |

January 5, 2023 Page 82 of 116

### PHYLLOSTOMIDAE (leaf-nosed bats)

| Scientific Name              | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA      | CESA | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|------------------------------|------------------------------|----------|----------------|---------------|----------|------|------------------------------|-------------------|---------------|
| Choeronycteris<br>mexicana   | Mexican long-<br>tongued bat |          | G3G4           | S1            | None     | None | CDFW:SSC<br>IUCN:NT          | Yes               |               |
| Leptonycteris<br>yerbabuenae | lesser long-nosed bat        |          | G3             | S1            | Delisted | None | CDFW:SSC<br>IUCN:NT          | Yes               | Yes           |
| Macrotus californicus        | California leaf-nosed bat    |          | G3G4           | S3            | None     | None | BLM:S<br>CDFW:SSC<br>IUCN:LC | Yes               |               |

## **VESPERTILIONIDAE** (evening bats)

| Scientific Name              | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|------------------------------|--------------------------|----------|----------------|---------------|------|------|----------------------------------------|-------------------|---------------|
| Antrozous pallidus           | pallid bat               |          | G4             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Corynorhinus<br>townsendii   | Townsend's big-eared bat |          | G4             | S2            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Euderma maculatum            | spotted bat              |          | G4             | S3            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC           | Yes               |               |
| Lasionycteris<br>noctivagans | silver-haired bat        |          | G3G4           | S3S4          | None | None | IUCN:LC                                | Yes               |               |
| Lasiurus cinereus            | hoary bat                |          | G3G4           | S4            | None | None | IUCN:LC                                | Yes               |               |
| Lasiurus frantzii            | western red bat          |          | G4             | S3            | None | None | CDFW:SSC<br>IUCN:LC                    | Yes               | Yes           |

January 5, 2023 Page 83 of 116

| Scientific Name    | Common Name                 | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|--------------------|-----------------------------|----------|----------------|---------------|------|------|------------------------------|-------------------|---------------|
| Lasiurus xanthinus | western yellow bat          |          | G4G5           | S3            | None | None | CDFW:SSC<br>IUCN:LC          | Yes               |               |
| Myotis ciliolabrum | western small-footed myotis |          | G5             | S3            | None | None | BLM:S<br>IUCN:LC             | Yes               |               |
| Myotis evotis      | long-eared myotis           |          | G5             | S3            | None | None | BLM:S<br>IUCN:LC             | Yes               |               |
| Myotis occultus    | Arizona Myotis              |          | G4G5           | S1            | None | None | CDFW:SSC<br>IUCN:LC          | Yes               |               |
| Myotis thysanodes  | fringed myotis              |          | G4             | S3            | None | None | BLM:S<br>IUCN:LC<br>USFS:S   | Yes               |               |
| Myotis velifer     | cave myotis                 |          | G4G5           | S1            | None | None | BLM:S<br>CDFW:SSC<br>IUCN:LC | Yes               |               |
| Myotis volans      | long-legged myotis          |          | G4G5           | S3            | None | None | IUCN:LC                      | Yes               |               |
| Myotis yumanensis  | Yuma myotis                 |          | G5             | S4            | None | None | BLM:S<br>IUCN:LC             | Yes               |               |

## MOLOSSIDAE (free-tailed bats)

| Scientific Name             | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-----------------------------|--------------------------|----------|----------------|---------------|------|------|---------------------|-------------------|---------------|
| Eumops perotis californicus | western mastiff bat      |          | G4G5T4         | S3S4          | None | None | BLM:S<br>CDFW:SSC   | Yes               |               |
| Nyctinomops femorosaccus    | pocketed free-tailed bat |          | G5             | S3            | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Nyctinomops macrotis        | big free-tailed bat      |          | G5             | S3            | None | None | CDFW:SSC<br>IUCN:LC | Yes               |               |

January 5, 2023 Page 84 of 116

## OCHOTONIDAE (pikas)

| Scientific Name               | Common Name      | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-------------------------------|------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Ochotona princeps schisticeps | gray-headed pika |          | G5T4           | S2S4          | None | None |                 | Yes               |               |

## **LEPORIDAE** (rabbits and hares)

| Scientific Name                     | Common<br>Name                          | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|-------------------------------------|-----------------------------------------|----------|----------------|---------------|------------|------------|----------------------------------------|-------------------|---------------|
| Brachylagus<br>idahoensis           | pygmy rabbit                            |          | G4             | S3            | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               |               |
| Lepus<br>americanus<br>klamathensis | Oregon snowshoe hare                    |          | G5T3T4Q        | S2            | None       | None       | CDFW:SSC                               | Yes               |               |
| Lepus<br>americanus<br>tahoensis    | Sierra Nevada<br>snowshoe hare          |          | G5T3T4Q        | S2            | None       | None       | CDFW:SSC                               | Yes               |               |
| Lepus<br>californicus<br>bennettii  | San Diego<br>black-tailed<br>jackrabbit |          | G5T3T4         | S3S4          | None       | None       |                                        | Yes               |               |
| Lepus townsendii<br>townsendii      | western white-<br>tailed<br>jackrabbit  |          | G5T5           | S3?           | None       | None       | CDFW:SSC                               | Yes               |               |
| Sylvilagus<br>bachmani<br>riparius  | riparian brush<br>rabbit                |          | G5T1           | S1            | Endangered | Endangered |                                        | Yes               |               |

January 5, 2023 Page 85 of 116

## **APLODONTIIDAE** (mountain beavers)

| Scientific Name                 | Common Name                      | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|---------------------------------|----------------------------------|----------|----------------|---------------|------------|------|---------------------|-------------------|---------------|
| Aplodontia rufa californica     | Sierra Nevada<br>mountain beaver |          | G5T3T4         | S2S3          | None       | None | CDFW:SSC<br>IUCN:LC | Yes               | Yes           |
| Aplodontia rufa<br>humboldtiana | Humboldt<br>mountain beaver      |          | G5TNR          | SNR           | None       | None |                     | Yes               |               |
| Aplodontia rufa<br>nigra        | Point Arena<br>mountain beaver   |          | G5T1           | S1            | Endangered | None | CDFW:SSC<br>IUCN:LC | Yes               | Yes           |
| Aplodontia rufa<br>phaea        | Point Reyes<br>mountain beaver   |          | G5T2           | S2            | None       | None | CDFW:SSC<br>IUCN:LC | Yes               | Yes           |

### **SCIURIDAE** (squirrels and relatives)

| Scientific Name                            | Common Name                                         | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|--------------------------------------------|-----------------------------------------------------|----------|----------------|---------------|------|------------|--------------------|-------------------|---------------|
| Ammospermophilus<br>nelsoni                | Nelson's (=San<br>Joaquin) antelope<br>squirrel     |          | G2G3           | S2S3          | None | Threatened | BLM:S<br>IUCN:EN   | Yes               |               |
| Callospermophilus<br>lateralis bernardinus | San Bernardino<br>golden-mantled<br>ground squirrel |          | G5T1           | S1            | None | None       |                    | No                |               |
| Glaucomys<br>oregonensis<br>californicus   | San Bernardino flying squirrel                      |          | G5T1T2         | S1S2          | None | None       | CDFW:SSC<br>USFS:S | Yes               |               |
| Neotamias alpinus                          | Alpine chipmunk                                     |          | G4             | S3            | None | None       | IUCN:LC            | No                |               |
| Neotamias<br>panamintinus acrus            | Kingston<br>Mountain<br>chipmunk                    |          | G4T1T2         | S1S2          | None | None       |                    | Yes               |               |
| Neotamias speciosus callipeplus            | Mount Pinos chipmunk                                |          | G4T2           | S2            | None | None       | USFS:S             | Yes               |               |

January 5, 2023 Page 86 of 116

| Scientific Name                          | Common Name                                     | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA       | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|------------------------------------------|-------------------------------------------------|----------|----------------|---------------|------|------------|-------------------|-------------------|---------------|
| Neotamias speciosus speciosus            | lodgepole<br>chipmunk                           |          | G4T3T4         | S2            | None | None       |                   | Yes               |               |
| Urocitellus mollis                       | Piute ground squirrel                           |          | G5             | S3            | None | None       | IUCN:LC           | No                |               |
| Xerospermophilus<br>mohavensis           | Mohave ground squirrel                          |          | G2G3           | S2S3          | None | Threatened | BLM:S<br>IUCN:NT  | Yes               |               |
| Xerospermophilus<br>tereticaudus chlorus | Palm Springs<br>round-tailed<br>ground squirrel |          | G5T2Q          | S2            | None | None       | BLM:S<br>CDFW:SSC | Yes               |               |

## **GEOMYIDAE** (pocket gophers)

| Scientific Name           | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|---------------------------|--------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Thomomys bottae operarius | Owens Lake pocket gopher |          | G5T1?          | S1?           | None | None |                 | No                |               |

### **HETEROMYIDAE** (kangaroo rats, pocket mice, and kangaroo mice)

| Scientific Name                    | Common<br>Name                            | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------------------|-------------------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Chaetodipus californicus femoralis | Dulzura pocket mouse                      |          | G5T3           | S3            | None | None | CDFW:SSC        | Yes               |               |
| Chaetodipus<br>fallax fallax       | northwestern<br>San Diego<br>pocket mouse |          | G5T3T4         | S3S4          | None | None | CDFW:SSC        | Yes               | Yes           |
| Chaetodipus<br>fallax pallidus     | pallid San<br>Diego pocket<br>mouse       |          | G5T3T4         | S3S4          | None | None | CDFW:SSC        | Yes               | Yes           |

January 5, 2023 Page 87 of 116

| Scientific Name                         | Common<br>Name                           | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA                    | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------|------------------------------------------|----------|----------------|---------------|------------|-------------------------|-----------------|-------------------|---------------|
| Dipodomys<br>californicus<br>eximius    | Marysville<br>California<br>kangaroo rat |          | G4T1           | S1            | None       | None                    | CDFW:SSC        | Yes               |               |
| Dipodomys<br>heermanni<br>arenae        | Lompoc<br>kangaroo rat                   |          | G4T1T2         | S1S2          | None       | None                    |                 | No                |               |
| Dipodomys<br>heermanni<br>berkeleyensis | Berkeley<br>kangaroo rat                 |          | G4T1           | S2            | None       | None                    |                 | Yes               |               |
| Dipodomys<br>heermanni dixoni           | Merced<br>kangaroo rat                   |          | G4T2T3         | S2            | None       | None                    |                 | Yes               |               |
| Dipodomys<br>heermanni<br>goldmani      | Salinas<br>kangaroo rat                  |          | G4T2T3         | S2S3          | None       | None                    |                 | No                |               |
| Dipodomys<br>heermanni<br>heermanni     | Heermann's<br>kangaroo rat               |          | G4T2           | S2            | None       | None                    |                 | No                |               |
| Dipodomys<br>heermanni<br>morroensis    | Morro Bay<br>kangaroo rat                |          | G4TH           | SH            | Endangered | Endangered              | CDFW:FP         | Yes               |               |
| Dipodomys<br>ingens                     | giant kangaroo<br>rat                    |          | G1G2           | S1S2          | Endangered | Endangered              | IUCN:EN         | Yes               |               |
| Dipodomys<br>merriami collinus          | Earthquake<br>Merriam's<br>kangaroo rat  |          | G5T2?          | S2            | None       | None                    |                 | Yes               |               |
| Dipodomys<br>merriami parvus            | San Bernardino kangaroo rat              |          | G5T1           | S1            | Endangered | Candidate<br>Endangered | CDFW:SSC        | Yes               |               |
| Dipodomys<br>merriami<br>trinidadensis  | Valle de la<br>Trinidad<br>kangaroo rat  |          | G5T2T3Q        | S2            | None       | None                    |                 | No                |               |

January 5, 2023 Page 88 of 116

| Scientific Name                           | Common<br>Name                          | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status              | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|-----------------------------------------|----------|----------------|---------------|------------|------------|------------------------------|-------------------|---------------|
| Dipodomys<br>nitratoides<br>brevinasus    | short-nosed<br>kangaroo rat             |          | G3T1T2         | S1S2          | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:VU | Yes               |               |
| Dipodomys<br>nitratoides exilis           | Fresno<br>kangaroo rat                  |          | G3TH           | SH            | Endangered | Endangered | IUCN:VU                      | Yes               |               |
| Dipodomys<br>nitratoides<br>nitratoides   | Tipton<br>kangaroo rat                  |          | G3T1T2         | S1S2          | Endangered | Endangered | IUCN:VU                      | Yes               |               |
| Dipodomys<br>panamintinus<br>argusensis   | Argus<br>Mountains<br>kangaroo rat      |          | G5T1T3         | S1S3          | None       | None       |                              | Yes               |               |
| Dipodomys<br>panamintinus<br>panamintinus | Panamint kangaroo rat                   |          | G5T3           | S3            | None       | None       |                              | Yes               |               |
| Dipodomys<br>simulans                     | Dulzura<br>kangaroo rat                 |          | G4             | S3            | None       | None       | IUCN:LC                      | No                |               |
| Dipodomys<br>stephensi                    | Stephens'<br>kangaroo rat               |          | G2             | S2            | Threatened | Threatened | IUCN:VU                      | Yes               |               |
| Dipodomys<br>venustus<br>elephantinus     | big-eared<br>kangaroo rat               |          | G4T2           | S3            | None       | None       |                              | Yes               |               |
| Dipodomys<br>venustus<br>sanctiluciae     | Santa Lucia<br>Mountain<br>kangaroo rat |          | G4TNR          | S3            | None       | None       |                              | No                |               |
| Dipodomys<br>venustus<br>venustus         | Santa Cruz<br>kangaroo rat              |          | G4T1           | S1            | None       | None       |                              | Yes               |               |

Page 89 of 116 January 5, 2023

| Scientific Name                                | Common<br>Name             | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|------------------------------------------------|----------------------------|----------|----------------|---------------|------------|------|----------------------------------------|-------------------|---------------|
| Perognathus<br>alticola alticola               | white-eared pocket mouse   |          | G2TH           | SH            | None       | None | BLM:S<br>CDFW:SSC<br>IUCN:VU<br>USFS:S | Yes               | Yes           |
| Perognathus<br>alticola<br>inexpectatus        | Tehachapi<br>pocket mouse  |          | G2T1T2         | S1S2          | None       | None | CDFW:SSC<br>IUCN:VU<br>USFS:S          | Yes               | Yes           |
| Perognathus<br>inornatus                       | San Joaquin pocket mouse   |          | G2G3           | S2S3          | None       | None | BLM:S<br>IUCN:LC                       | Yes               | Yes           |
| Perognathus<br>inornatus<br>psammophilus       | Salinas pocket mouse       |          | G2G3T2?        | S1            | None       | None | CDFW:SSC                               | Yes               |               |
| Perognathus<br>Iongimembris<br>bangsi          | Palm Springs pocket mouse  |          | G5T2           | S1            | None       | None | BLM:S<br>CDFW:SSC                      | Yes               |               |
| Perognathus<br>longimembris<br>brevinasus      | Los Angeles pocket mouse   |          | G5T2           | S1S2          | None       | None | CDFW:SSC                               | Yes               |               |
| Perognathus<br>longimembris<br>internationalis | Jacumba<br>pocket mouse    |          | G5T2T3         | S2            | None       | None | CDFW:SSC                               | Yes               |               |
| Perognathus<br>longimembris<br>pacificus       | Pacific pocket mouse       |          | G5T1           | S2            | Endangered | None | CDFW:SSC                               | Yes               |               |
| Perognathus<br>longimembris<br>salinensis      | Saline Valley pocket mouse |          | G5T1           | S1            | None       | None |                                        | No                |               |
| Perognathus<br>longimembris<br>tularensis      | Tulare pocket mouse        |          | G5T1           | S1            | None       | None |                                        | No                |               |

January 5, 2023 Page 90 of 116

# Special Animals List – January 2023

| Scientific Name                            | Common<br>Name            | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------------------------|---------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Perognathus<br>mollipilosus<br>xanthonotus | yellow-eared pocket mouse |          | GNRT2          | S2            | None | None | BLM:S           | Yes               |               |

# **CRICETIDAE** (mice, rats, and voles)

| Scientific Name                           | Common<br>Name            | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status     | Records in CNDDB? | End<br>Notes? |
|-------------------------------------------|---------------------------|----------|----------------|---------------|------------|------------|---------------------|-------------------|---------------|
| Arborimus albipes                         | white-footed vole         |          | G3G4           | S2            | None       | None       | CDFW:SSC<br>IUCN:LC | Yes               |               |
| Arborimus pomo                            | Sonoma tree vole          |          | G3             | S3            | None       | None       | CDFW:SSC<br>IUCN:NT | Yes               |               |
| Microtus<br>californicus<br>halophilus    | Monterey vole             |          | G5T1           | S2            | None       | None       |                     | No                |               |
| Microtus<br>californicus<br>mohavensis    | Mohave river vole         |          | G5T1           | S1            | None       | None       | CDFW:SSC            | Yes               |               |
| Microtus<br>californicus<br>sanpabloensis | San Pablo vole            |          | G5T1T2         | S1S2          | None       | None       | CDFW:SSC            | Yes               |               |
| Microtus<br>californicus<br>scirpensis    | Amargosa vole             |          | G5T1           | S1            | Endangered | Endangered |                     | Yes               |               |
| Microtus<br>californicus<br>stephensi     | south coast<br>marsh vole |          | G5T2T3         | S2            | None       | None       | CDFW:SSC            | Yes               |               |
| Microtus<br>californicus<br>vallicola     | Owens Valley vole         |          | G5T3           | S3            | None       | None       | BLM:S<br>CDFW:SSC   | Yes               |               |

Page 91 of 116 January 5, 2023

# Special Animals List – January 2023

| Scientific Name                             | Common<br>Name                               | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status   | Records in CNDDB? | End<br>Notes? |
|---------------------------------------------|----------------------------------------------|----------|----------------|---------------|------------|------|-------------------|-------------------|---------------|
| Neotoma albigula<br>venusta                 | Colorado<br>Valley woodrat                   |          | G5T3T4         | S1S2          | None       | None |                   | Yes               |               |
| Neotoma fuscipes annectens                  | San Francisco<br>dusky-footed<br>woodrat     |          | G5T2T3         | S2S3          | None       | None | CDFW:SSC          | Yes               |               |
| Neotoma fuscipes<br>riparia                 | riparian (=San<br>Joaquin Valley)<br>woodrat |          | G5T1Q          | S1            | Endangered | None | CDFW:SSC          | Yes               | Yes           |
| Neotoma lepida<br>intermedia                | San Diego<br>desert woodrat                  |          | G5T3T4         | S3S4          | None       | None | CDFW:SSC          | Yes               |               |
| Neotoma macrotis<br>luciana                 | Monterey<br>dusky-footed<br>woodrat          |          | G5T3           | S3            | None       | None | BLM:S<br>CDFW:SSC | Yes               |               |
| Onychomys<br>torridus ramona                | southern<br>grasshopper<br>mouse             |          | G5T3           | S3            | None       | None | CDFW:SSC          | Yes               |               |
| Onychomys<br>torridus tularensis            | Tulare<br>grasshopper<br>mouse               |          | G5T1T2         | S1S2          | None       | None | BLM:S<br>CDFW:SSC | Yes               |               |
| Peromyscus<br>maniculatus<br>anacapae       | Anacapa Island deer mouse                    |          | G5T1T2         | S1S2          | None       | None | CDFW:SSC          | Yes               |               |
| Peromyscus<br>maniculatus<br>clementis      | San Clemente<br>deer mouse                   |          | G5T1T2         | S1S2          | None       | None | CDFW:SSC          | No                |               |
| Reithrodontomys<br>megalotis distichlis     | Salinas harvest mouse                        |          | G5T1           | S2            | None       | None |                   | Yes               |               |
| Reithrodontomys<br>megalotis<br>santacruzae | Santa Cruz<br>harvest mouse                  |          | G5T1Q          | S1            | None       | None |                   | Yes               | Yes           |

January 5, 2023 Page 92 of 116

| Scientific Name             | Common<br>Name              | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-----------------------------|----------|----------------|---------------|------------|------------|--------------------|-------------------|---------------|
| Reithrodontomys raviventris | salt-marsh<br>harvest mouse |          | G1G2           | S1S2          | Endangered | Endangered | CDFW:FP<br>IUCN:EN | Yes               |               |
| Sigmodon<br>arizonae plenus | Colorado River cotton rat   |          | G5T2T3         | S1S2          | None       | None       | CDFW:SSC           | Yes               |               |
| Sigmodon hispidus eremicus  | Yuma hispid cotton rat      |          | G5T2T3         | S2            | None       | None       | CDFW:SSC           | Yes               |               |

## **DIPODIDAE** (jumping mice)

| Scientific Name          | Common Name               | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------|---------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Zapus trinotatus orarius | Point Reyes jumping mouse |          | G5T1T3Q        | S2            | None | None | CDFW:SSC        | Yes               |               |

# **ERETHIZONTIDAE** (New World porcupines)

| Scientific Name    | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------|--------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Erethizon dorsatum | North American porcupine |          | G5             | S3            | None | None | IUCN:LC         | Yes               |               |

# **CANIDAE** (foxes, wolves, and coyotes)

| Scientific Name              | Common Name                  | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|------------------------------|------------------------------|----------|----------------|---------------|------------|------------|-----------------|-------------------|---------------|
| Canis lupus                  | gray wolf                    |          | G5             | S1            | Endangered | Endangered | IUCN:LC         | Yes               |               |
| Urocyon littoralis catalinae | Santa Catalina<br>Island fox |          | G3T1           | S1            | Threatened | Threatened |                 | Yes               | Yes           |
| Urocyon littoralis clementae | San Clemente<br>Island fox   |          | G3T1           | S1            | None       | Threatened |                 | Yes               | Yes           |

January 5, 2023 Page 93 of 116

# Special Animals List – January 2023

| Scientific Name                   | Common Name                                         | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|-----------------------------------------------------|----------|----------------|---------------|------------|------------|-----------------|-------------------|---------------|
| Urocyon littoralis<br>dickeyi     | San Nicolas<br>Island fox                           |          | G3T1           | S1            | None       | Threatened |                 | Yes               | Yes           |
| Urocyon littoralis<br>littoralis  | San Miguel Island fox                               |          | G3T1           | S1            | Delisted   | Threatened |                 | Yes               | Yes           |
| Urocyon littoralis<br>santacruzae | Santa Cruz Island fox                               |          | G3T1           | S1            | Delisted   | Threatened |                 | Yes               | Yes           |
| Urocyon littoralis<br>santarosae  | Santa Rosa Island fox                               |          | G3T1           | S1            | Delisted   | Threatened |                 | Yes               | Yes           |
| Vulpes macrotis<br>mutica         | San Joaquin kit fox                                 |          | G4T2           | S2            | Endangered | Threatened |                 | Yes               |               |
| Vulpes vulpes<br>necator pop. 1   | Sierra Nevada red<br>fox - southern<br>Cascades DPS |          | G5TNR          | S1            | None       | Threatened | USFS:S          | Yes               |               |
| Vulpes vulpes<br>necator pop. 2   | Sierra Nevada red<br>fox - Sierra<br>Nevada DPS     |          | G5TNR          | S1            | Endangered | Threatened | USFS:S          | Yes               |               |
| Vulpes vulpes<br>patwin           | Sacramento<br>Valley red fox                        |          | G5T2           | S2            | None       | None       |                 | No                |               |

# OTARIIDAE (sea lions and fur seals)

| Scientific Name         | Common Name            | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status    | Records in CNDDB? | End<br>Notes? |
|-------------------------|------------------------|----------|----------------|---------------|------------|------------|--------------------|-------------------|---------------|
| Arctocephalus townsendi | Guadalupe fur-<br>seal |          | G1             | S1            | Threatened | Threatened | CDFW:FP<br>IUCN:LC | Yes               |               |
| Callorhinus ursinus     | northern fur-seal      |          | G3             | S1            | None       | None       | IUCN:VU            | Yes               |               |
| Eumetopias jubatus      | Steller sea lion       |          | G3             | S2            | Delisted   | None       | IUCN:NT<br>MMC:SSC | Yes               |               |

January 5, 2023 Page 94 of 116

# PROCYONIDAE (raccoons and ringtails)

| Scientific Name                | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|--------------------------------|-------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Bassariscus astutus octavus    | southern California ringtail  |          | G5TNR          | S3            | None | None | CDFW:FP         | No                |               |
| Bassariscus astutus willetti   | Palo Verde Mountains ringtail |          | G5TNR          | S2            | None | None | CDFW:FP         | No                |               |
| Bassariscus astutus yumanensis | Yuma ringtail                 |          | G5TNR          | S2            | None | None | CDFW:FP         | No                |               |

# **MUSTELIDAE** (weasels and relatives)

| Scientific Name                | Common Name              | Comments | Global<br>Rank | State<br>Rank | ESA                    | CESA       | Other<br>Status               | Records in CNDDB? | End<br>Notes? |
|--------------------------------|--------------------------|----------|----------------|---------------|------------------------|------------|-------------------------------|-------------------|---------------|
| Enhydra lutris<br>nereis       | southern sea<br>otter    |          | G4T2           | S3            | Threatened             | None       | CDFW:FP<br>IUCN:EN<br>MMC:SSC | Yes               | Yes           |
| Gulo gulo                      | wolverine                |          | G4             | S1            | Proposed<br>Threatened | Threatened | CDFW:FP<br>IUCN:LC<br>USFS:S  | Yes               |               |
| Lontra<br>canadensis<br>sonora | southwestern river otter |          | G5T1           | SH            | None                   | None       | CDFW:SSC                      | Yes               | Yes           |
| Martes caurina                 | Pacific marten           |          | G4G5           | S3            | None                   | None       | IUCN:LC<br>USFS:S             | Yes               |               |
| Martes caurina humboldtensis   | Humboldt<br>marten       |          | G4G5T1         | S1            | Threatened             | Endangered | CDFW:SSC<br>USFS:S            | Yes               | Yes           |
| Martes caurina<br>sierrae      | Sierra marten            |          | G4G5T3         | S3            | None                   | None       | USFS:S                        | Yes               |               |
| Mustela frenata<br>inyoensis   | Inyo long-tailed weasel  |          | G5T2Q          | S2            | None                   | None       |                               | No                |               |

January 5, 2023 Page 95 of 116

# Special Animals List – January 2023

| Scientific Name                | Common Name                               | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA       | Other<br>Status                        | Records in CNDDB? | End<br>Notes? |
|--------------------------------|-------------------------------------------|----------|----------------|---------------|------------|------------|----------------------------------------|-------------------|---------------|
| Mustela frenata<br>xanthogenys | San Joaquin<br>long-tailed<br>weasel      |          | G5T2T3         | S3            | None       | None       |                                        | No                |               |
| Pekania pennanti               | Fisher                                    |          | G5             | S2S3          | None       | None       | BLM:S<br>CDFW:SSC<br>IUCN:LC<br>USFS:S | Yes               | Yes           |
| Pekania pennanti<br>pop. 2     | Fisher -<br>southern Sierra<br>Nevada ESU |          | G5T1           | S1            | Endangered | Threatened | BLM:S<br>CDFW:SSC<br>USFS:S            | Yes               |               |
| Taxidea taxus                  | American<br>badger                        |          | G5             | S3            | None       | None       | CDFW:SSC<br>IUCN:LC                    | Yes               |               |

# MEPHITIDAE (skunks)

| Scientific Name             | Common Name                   | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------|-------------------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Spilogale gracilis amphiala | Channel Islands spotted skunk |          | G5T3           | S3            | None | None | CDFW:SSC        | Yes               |               |

# **FELIDAE** (cats and relatives)

| Scientific Name         | Common Name        | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-------------------------|--------------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Lynx rufus pallescens   | pallid bobcat      |          | G5T3?          | S3?           | None | None |                 | No                |               |
| Puma concolor<br>browni | Yuma mountain lion |          | G5T1T2Q        | S1            | None | None | CDFW:SSC        | Yes               |               |

January 5, 2023 Page 96 of 116

# **CERVIDAE** (deer, elk, and moose)

| Scientific Name            | Common Name | Comments | Global<br>Rank | State<br>Rank | ESA  | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|----------------------------|-------------|----------|----------------|---------------|------|------|-----------------|-------------------|---------------|
| Cervus canadensis nannodes | tule elk    |          | G5T3           | S3            | None | None |                 | No                |               |

## **ANTILOCAPRIDAE** (pronghorn)

| Scientific Name                         | Common Name       | Comments | Global<br>Rank | State<br>Rank | ESA        | CESA | Other<br>Status | Records in CNDDB? | End<br>Notes? |
|-----------------------------------------|-------------------|----------|----------------|---------------|------------|------|-----------------|-------------------|---------------|
| Antilocapra<br>americana                | pronghorn         |          | G5             | S3            | None       | None | IUCN:LC         | No                |               |
| Antilocapra<br>americana<br>sonoriensis | Sonoran pronghorn |          | G5T1           | SH            | Endangered | None | IUCN:EN         | No                |               |

# **BOVIDAE** (sheep and relatives)

| Scientific Name                   | Common Name                        | Comments | Global<br>Rank | State<br>Rank |            | CESA       | Other<br>Status            | Records in CNDDB? | End<br>Notes? |
|-----------------------------------|------------------------------------|----------|----------------|---------------|------------|------------|----------------------------|-------------------|---------------|
| Ovis canadensis<br>nelsoni        | desert bighorn<br>sheep            |          | G4T4           | S3            | None       | None       | BLM:S<br>CDFW:FP<br>USFS:S | Yes               | Yes           |
| Ovis canadensis<br>nelsoni pop. 2 | Peninsular<br>bighorn sheep<br>DPS |          | G4T3Q          | S2            | Endangered | Threatened | CDFW:FP                    | Yes               | Yes           |
| Ovis canadensis<br>sierrae        | Sierra Nevada<br>bighorn sheep     |          | G4T2           | S2            | Endangered | Endangered | CDFW:FP                    | Yes               |               |

January 5, 2023 Page 97 of 116

#### **End Notes**

#### **Invertebrates**

#### GASTROPODA (snails, slugs, and abalones)

Prophysaon sp. 1

Klamath taildropper

1) This entity is known to be unique morphologically and genetically (Frest & Johannes 2000, Wilke & Duncan 2004, Roth & Sadeghian 2006), but has not been formally described and some may reference it as part of the *Prophysaon coeruleum* species complex.

#### **ARACHNIDA** (spiders and relatives)

Hubbardia shoshonensis

Shoshone Cave whip-scorpion

1) BLM Sensitive list uses the scientific name *Trithyreus shoshonensis*.

#### **CRUSTACEA**, Order Amphipoda (amphipods)

Hyalella muerta

Texas Spring amphipod

1) First North American hypogean hyalellid.

Hyalella sandra

Death Valley amphipod

1) Population in Texas Springs is an accidental introduction. Population in Nevares Springs may be a new species.

#### **INSECTA, Order Coleoptera (beetles)**

Trigonoscuta sp.

Doyen's trigonoscuta dune weevil

1) Sometimes referred to as *Trigonoscuta doyeni*, which is an unpublished manuscript name.

#### **INSECTA**, Order Lepidoptera (butterflies and moths)

Callophrys thornei

Thorne's hairstreak

1) Formerly Mitoura thornei.

January 5, 2023 Page 98 of 116

#### Euproserpinus euterpe

#### Kern primrose sphinx moth

1) Until its rediscovery in Kern County in 1974, this moth had been thought to be extinct. A second population was later found in San Luis Obispo County (Xerces Society 2005).

#### Speyeria zerene myrtleae

#### Myrtle's silverspot butterfly

1) The USFWS and others have not yet determined if the taxonomic expansion by Emmel and Emmel (1998) into *S. z. myrtleae* and *S. z. puntareyes* is warranted. The *Speyereia zerene* along the coast of Marin and Sonoma Counties are federally endangered under the subspecies concept in the 1992 listing.

#### INSECTA, Order Hymenoptera (ants, bees, and wasps)

#### Bombus crotchii

#### Crotch bumble bee

1) Originally advanced to candidacy by the Fish and Game Commission in June 2019. Trial court decision temporarily removed its candidacy in February 2021. State Supreme Court ruling reversed judgement and reinstated its candidacy in Sep 2022 (Supreme Court Case S275412).

#### Bombus franklini

#### Franklin's bumble bee

1) Originally advanced to candidacy by the Fish and Game Commission in June 2019. Trial court decision temporarily removed its candidacy in February 2021. State Supreme Court ruling reversed judgement and reinstated its candidacy in Sep 2022 (Supreme Court Case S275412).

#### Bombus occidentalis

#### western bumble bee

1) Originally advanced to candidacy by the Fish and Game Commission in June 2019. Trial court decision temporarily removed its candidacy in February 2021. State Supreme Court ruling reversed judgement and reinstated its candidacy in Sep 2022 (Supreme Court Case S275412).

#### Bombus suckleyi

#### Suckley's cuckoo bumble bee

1) Originally advanced to candidacy by the Fish and Game Commission in June 2019. Trial court decision temporarily removed its candidacy in February 2021. State Supreme Court ruling reversed judgement and reinstated its candidacy in Sep 2022 (Supreme Court Case S275412).

January 5, 2023 Page 99 of 116

#### **Fishes**

#### **SALMONIDAE** (trout and salmon)

Oncorhynchus kisutch pop. 2

coho salmon - southern Oregon / northern California ESU

- 1) Federal listing refers to populations between Cape Blanco, Oregon and Punta Gorda, Humboldt County, California.
- 2) State listing refers to populations between the Oregon border and Punta Gorda, Humboldt County, California.

Oncorhynchus kisutch pop. 4

coho salmon - central California coast ESU

- 1) Federal listing is limited to naturally spawning populations in streams between Punta Gorda, Humboldt County and the San Lorenzo River, Santa Cruz County.
- 2) State listing is limited to populations south of Punta Gorda, Humboldt County.

Oncorhynchus mykiss irideus pop. 1

steelhead - Klamath Mountains Province DPS

- 1) This ESU includes all naturally spawned populations residing in streams between the Elk River in Oregon and the Klamath River in California, inclusive.
- 2) CDFW SSC designation refers only to the California portion of the ESU and refers only to the summer-run.

Oncorhynchus mykiss irideus pop. 10

steelhead - southern California DPS

1) The federal designation refers to fish in the coastal basins from the Santa Maria River (inclusive), south to the U.S. - Mexico Border.

Oncorhynchus mykiss irideus pop. 11

steelhead - Central Valley DPS

1) Federal listing includes all runs in the Sacramento and San Joaquin rivers and their tributaries.

Oncorhynchus mykiss irideus pop. 16

steelhead - northern California DPS

- 1) The federal designation refers to naturally spawned populations residing below impassable barriers in coastal basins from Redwood Creek in Humboldt County to, and including, the Gualala River in Mendocino County
- 2) CDFW SSC designation refers only to the summer-run.

January 5, 2023 Page 100 of 116

Oncorhynchus mykiss irideus pop. 8

steelhead - central California coast DPS

1) Federal listing includes all runs in coastal basins from the Russian River in Sonoma County, south to Soquel Creek in Santa Cruz County, inclusive. It includes the San Francisco and San Pablo Bay basins, but excludes the Sacramento-San Joaquin River basins.

Oncorhynchus mykiss irideus pop. 9

steelhead - south-central California coast DPS

- 1) Federal listing includes all runs in coastal basins from the Pajaro River south to, but not including, the Santa Maria River.
- 2) CDFW SSC designation refers to southern steelhead trout.

Oncorhynchus tshawytscha pop. 11

chinook salmon - Central Valley spring-run ESU

1) Federal listing refers to the Central Valley spring-run ESU. It includes populations spawning in the Sacramento River and its tributaries.

Oncorhynchus tshawytscha pop. 13

chinook salmon - Central Valley fall / late fall-run ESU

- 1) The Central Valley fall/late fall-run ESU refers to populations spawning in the Sacramento and San Joaquin rivers and their tributaries.
- 2) CDFW SSC designation refers only to the fall-run.

Oncorhynchus tshawytscha pop. 17

chinook salmon - California coastal ESU

 Originally proposed as part of a larger Southern Oregon and California Coastal ESU. This new ESU was revised to include only naturally spawned coastal spring- and fall-run chinook salmon between Redwood Creek in Humboldt County and the Russian River in Sonoma County.

#### **OSMERIDAE** (smelt)

Spirinchus thaleichthys

longfin smelt

1) Federal proposed status (2022-10-07) is for the San Francisco Bay-Delta DPS of the longfin smelt.

January 5, 2023 Page 101 of 116

#### Thaleichthys pacificus

eulachon

1) The Federal Threatened status pertains to the "southern DPS" of eulachon that range from central British Columbia, Washington, Oregon, and northern California.

#### CYPRINIDAE (minnows and carp)

Rhinichthys osculus ssp. 1

Amargosa Canyon speckled dace

1) Current taxonomy considers this taxon to be a distinct population of *Rhinichthys osculus nevadensis*.

Rhinichthys osculus ssp. 12

Long Valley speckled dace

1) Formerly Rhinichthys osculus ssp. 5, which did not account for other undescribed subspecies outside of CA.

Rhinichthys osculus ssp. 2

Owens speckled dace

1) Current taxonomy includes the Benton Valley speckled dace (formerly ssp. 4) with the Owens speckled dace.

Rhinichthys osculus ssp. 8

Santa Ana speckled dace

1) Formerly Rhinichthys osculus ssp. 3, which did not account for other undescribed subspecies outside of CA.

Siphateles bicolor ssp. 11

High Rock Springs tui chub

1) Formerly Siphateles bicolor ssp. 2, which did not account for other undescribed subspecies outside of CA.

Siphateles bicolor ssp. 12

Eagle Lake tui chub

1) Formerly Siphateles bicolor ssp. 1, which did not account for other undescribed subspecies outside of CA.

Siphateles bicolor ssp. 14

Pit River tui chub

1) Formerly Siphateles bicolor ssp. 3, which did not account for other undescribed subspecies outside of CA.

January 5, 2023 Page 102 of 116

#### **GASTEROSTEIDAE** (sticklebacks)

Gasterosteus aculeatus microcephalus

resident threespine stickleback

1) USFS Sensitive designation refers to the full species.

Gasterosteus aculeatus williamsoni

unarmored threespine stickleback

1) USFS Sensitive designation refer to the full species.

#### **Amphibians**

#### PLETHODONTIDAE (lungless salamanders)

Aneides niger

Santa Cruz black salamander

1) CDFW SSC status uses former subspecies concept of Aneides flavipunctatus niger.

Batrachoseps relictus

relictual slender salamander

1) Taxonomy follows Jockusch et al. 2012. Morphological and molecular diversification of slender salamanders (Caudata: Plethodontidae: *Batrachoseps*) in the southern Sierra Nevada of California with descriptions of two new species. Zootaxa 3190:1-30, which synonymized *Batrachoseps* sp. 1, Breckenridge Mountain slender salamander, with *B. relictus*.

Hydromantes shastae

Shasta salamander

1) Hydromantes shastae has been proposed to consist of cryptic genetic structuring that may warrant recognition of additional species named as Hydromantes samweli and Hydromantes wintu (Bingham et al. 2018, Bull. Mus. Comp. Zool. 161(10):403-427). Until formally reviewed by the Fish and Game Commission, all populations in the Shasta salamander complex are legally state threatened.

Plethodon asupak

Scott Bar salamander

1) Since this newly described species was formerly considered to be a subpopulation of *Plethodon stormi* (Mead et al. 2005), and since *Plethodon stormi* is listed as threatened under CESA, *Plethodon asupak* retains the designation as a threatened species under CESA (Calif. Regulatory Notice Register, No. 21-Z, p.916, 25 May 2007).

January 5, 2023 Page 103 of 116

#### **BUFONIDAE** (true toads)

Anaxyrus californicus

arroyo toad

1) At the time of listing, arroyo toad was known as *Bufo microscaphus californicus*, a subspecies of southwestern toad. In 2001, it was determined to be its own species, *Bufo californicus*. Since then, many species in the genus *Bufo* were changed to the genus *Anaxyrus*, and now arroyo toad is known as *Anaxyrus californicus* (Frost et al. 2006).

#### Anaxyrus canorus

Yosemite toad

1) Formerly *Bufo canorus*; Frost et al. (2006. The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297: 1-370) placed this species in the genus *Anaxyrus* (Tschudi 1845).

#### Anaxyrus exsul

black toad

1) Formerly *Bufo canorus*; Frost et al. (2006. The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297: 1-370) placed this species in the genus *Anaxyrus* (Tschudi 1845).

Incilius alvarius

Sonoran Desert toad

1) Formerly *Bufo alvarius*. Between 2006-2009, the scientific name has been changed to *Cranopsis alvaria*, *Ollotis alvaria*, *Incilius alvarius*, back to *Ollotis alvarius*, and then back to *Incilius alvarius*. The common name has changed from Colorado River toad to Sonoran Desert toad.

#### **RANIDAE** (true frogs)

Lithobates pipiens

northern leopard frog

1) Formerly *Rana pipiens*; Frost et al. (2006. The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297: 1-370) placed this species in the genus *Lithobates* (Fitzinger 1843).

Lithobates yavapaiensis

lowland leopard frog

1) Formerly *Rana yavapaiensis*; Frost et al. (2006. The Amphibian Tree of Life. Bulletin of the American Museum of Natural History 297: 1-370) placed this species in the genus Lithobates (Fitzinger 1843).

January 5, 2023 Page 104 of 116

#### Rana aurora

#### northern red-legged frog

1) An mtDNA study (Shaffer et al. 2004) concluded that *Rana aurora aurora and Rana aurora draytonii* should be recognized as separate species with a narrow zone of overlap

#### Rana draytonii

#### California red-legged frog

1) An mtDNA study (Shaffer et al. 2004) concluded that *Rana aurora aurora* and *Rana aurora draytonii* should be recognized as separate species with a narrow zone of overlap, and that the range of draytonii extends about 100 km further north in coastal California than previously thought.

#### Rana muscosa

#### southern mountain yellow-legged frog

1) Both federally recognized Distinct Population Segments (DPS) of the mountain yellow-legged frog (*Rana muscosa*) are currently Endangered (2021). The mountain yellow-legged frog – northern DPS is known from the southern Sierra Nevada; the mountain yellow-legged frog – southern DPS is known from the Transverse Ranges.

#### Rana sierrae

#### Sierra Nevada yellow-legged frog

1) Formerly Rana muscosa. Rana muscosa was split into Rana sierrae, the Sierra Nevada yellow-legged frog, found in the northern and central Sierra Nevada, and Rana muscosa, the southern mountain yellow-legged frog, found in the southern Sierra Nevada and southern California.

#### Reptiles

#### **EMYDIDAE** (box and water turtles)

#### Emys marmorata

#### western pond turtle

- 1) CNDDB tracks western pond turtle at the full species level, based on the determination that the previous subspecies split was not warranted (Spinks, P.Q. and Shaffer, H.B. 2005. Range-wide molecular analysis of the western pond turtle (*Emys marmorata*): cryptic variation, isolation by distance, and their conservation implications. Molecular Ecology 14(7):2047-2064).
- 2) Genus was updated to *Emys* based on findings in: Spinks, P.Q. and Shaffer, H.B. 2009. Conflicting mitochondrial and nuclear phylogenies for the widely disjunct *Emys* (Testudines: Emydidae) species complex, and what they tell us about biogeography and hybridization. Systematic Biology. 58(1):1-20.

January 5, 2023 Page 105 of 116

#### **XANTUSIIDAE** (night lizards)

Xantusia vigilis sierrae

Sierra night lizard

1) Formerly Xantusia sierrae; scientific name changed to reflect currently accepted subspecies concept.

#### **ANNIELLIDAE** (legless lizards)

Anniella alexanderae

Temblor legless lizard

1) Legless lizards (*Anniella* spp.) in California were traditionally considered one species, but are now considered five species (Pappenfuss and Parham, 2013). The prior (Jennings and Hayes, 1994) and current (Thompson et al. 2016) Species of Special Concern (SSC) projects evaluated the traditional single species taxon and determined all legless lizards in California to be an SSC. Therefore, the SSC status is carried over to the new taxon concepts until further SSC evaluation.

#### Anniella campi

Southern Sierra legless lizard

1) Legless lizards (*Anniella* spp.) in California were traditionally considered one species, but are now considered five species (Pappenfuss and Parham, 2013). The prior (Jennings and Hayes, 1994) and current (Thompson et al. 2016) Species of Special Concern (SSC) projects evaluated the traditional single species taxon and determined all legless lizards in California to be an SSC. Therefore, the SSC status is carried over to the new taxon concepts until further SSC evaluation.

#### Anniella grinnelli

Bakersfield legless lizard

1) Legless lizards (*Anniella* spp.) in California were traditionally considered one species, but are now considered five species (Pappenfuss and Parham, 2013). The prior (Jennings and Hayes, 1994) and current (Thompson et al. 2016) Species of Special Concern (SSC) projects evaluated the traditional single species taxon and determined all legless lizards in California to be an SSC. Therefore, the SSC status is carried over to the new taxon concepts until further SSC evaluation.

#### Anniella pulchra

Northern California legless lizard

1) Legless lizards (*Anniella* spp.) in California were traditionally considered one species, but are now considered five species (Pappenfuss and Parham, 2013). The prior (Jennings and Hayes, 1994) and current (Thompson et al. 2016) Species of Special Concern (SSC) projects evaluated the traditional single species taxon and determined all legless lizards in California to be an SSC. Therefore, the SSC status is carried over to the new taxon concepts until further SSC evaluation.

January 5, 2023 Page 106 of 116

Anniella spp.

California legless lizard

1) This element represents California records of *Anniella* not yet assigned to new species within the *Anniella pulchra* complex. Legless lizards (*Anniella* spp.) in California were traditionally considered one species, but are now considered five species (Pappenfuss and Parham, 2013). CNDDB has assigned new species concepts to most, but not all, previously known and extant legless lizard occurrences. Where an occurrence of a legless lizard is not known to the species level, the general concept California legless lizard (*Anniella* spp.) will be applied until further evidence is available. All legless lizards in California are a Species of Special Concern (Thomson et al., 2016).

Anniella stebbinsi

Southern California legless lizard

1) Legless lizards (*Anniella* spp.) in California were traditionally considered one species, but are now considered five species (Pappenfuss and Parham, 2013). The prior (Jennings and Hayes, 1994) and current (Thompson et al. 2016) Species of Special Concern (SSC) projects evaluated the traditional single species taxon and determined all legless lizards in California to be an SSC. Therefore, the SSC status is carried over to the new taxon concepts until further SSC evaluation.

#### **HELODERMATIDAE** (venomous lizards)

Heloderma suspectum cinctum

banded Gila monster

1) BLM Sensitive designation refers to the full species.

#### **NATRICIDAE** (live-bearing snakes)

Thamnophis sirtalis pop. 1

south coast gartersnake

1) CDFW Species of Special Concern treats this population as a distinct taxon, though it is more commonly treated as a subpopulation of *Thamnophis sirtalis infernalis*, the California red-sided gartersnake.

#### **Birds**

#### PHASIANIDAE (grouse and ptarmigan)

Centrocercus urophasianus

greater sage-grouse

1) 20151002 finding was that federal listing of the full species was not warranted, Proposed rule to federally list the Bi-State DPS (Mono Basin of CA and NV; Mono, Alpine, and Inyo counties in California) as threatened was withdrawn 20200331.

January 5, 2023 Page 107 of 116

#### Dendragapus fuliginosus howardi

Mount Pinos sooty grouse

- 1) Formerly merged with *D. obscurus* as blue grouse, but separated on the basis of genetic evidence and differences in voice, behavior, and plumage.
- 2) The North American Bird Conservation Initiative Watch List designation refers to the full species.

#### ACCIPITRIDAE (hawks, kites, harriers, and eagles)

Circus hudsonius

northern harrier

1) Formerly considered conspecific with *Circus cyaneus*, but treated as separate on the basis of differences in morphology, plumage, and breeding habitat.

#### RALLIDAE (rails, coots, and gallinules)

Laterallus jamaicensis coturniculus

California black rail

- 1) The North American Bird Conservation Initiative Watch List designation refers to the full species.
- 2) The IUCN designation of Near Threatened refers to the full species.

Rallus obsoletus levipes

light-footed Ridgway's rail

1) The North American Bird Conservation Initiative Watch List designation refers to the full species.

Rallus obsoletus obsoletus

California Ridgway's rail

1) The North American Bird Conservation Initiative Watch List designation refers to the full species.

Rallus obsoletus yumanensis

Yuma Ridgway's rail

1) The North American Bird Conservation Initiative Watch List designation refers to the full species.

#### **CHARADRIIDAE** (plovers and relatives)

Charadrius montanus

mountain plover

1) Proposed rule to federally list the mountain plover as threatened was withdrawn 20110512.

January 5, 2023 Page 108 of 116

#### Charadrius nivosus nivosus

western snowy plover

- 1) Federal listing applies only to the Pacific coastal population.
- 2) CDFW SSC designation refers to both the coastal and interior populations.

#### LARIDAE (gulls and terns)

Gelochelidon nilotica

gull-billed tern

1) Taxonomy recently changed from Sterna nilotica.

Hydroprogne caspia

Caspian tern

1) Taxonomy recently changed from Sterna caspia.

Sternula antillarum browni

California least tern

- 1) Taxonomy recently changed from Sterna antillarum browni.
- 2) North American Bird Conservation Initiative Watch List designation refers to the full species.

Thalasseus elegans

elegant tern

1) Taxonomy recently changed from Sterna elegans.

#### **ALCIDAE** (auklets, puffins, and relatives)

Synthliboramphus scrippsi

Scripps's murrelet

1) Formerly included in Xantus's murrelet as Synthliboramphus hypoleucus scrippsi. Now considered a full species.

#### STRIGIDAE (owls)

Athene cunicularia

burrowing owl

1) A burrow site = an observation of one or more owls at a burrow or evidence of recent occupation such as whitewash and feathers. Winter observations at a burrow are mapped. Winter observations with or without a burrow in San Francisco, Ventura, Sonoma, Marin, Napa, and Santa Cruz Counties are mapped.

January 5, 2023 Page 109 of 116

#### Strix occidentalis caurina

northern spotted owl

- 1) There are no spotted owl EOs in the CNDDB. All spotted owl location information is maintained in a separate database (<a href="https://wildlife.ca.gov/Data/CNDDB/Spotted-Owl-Info">https://wildlife.ca.gov/Data/CNDDB/Spotted-Owl-Info</a>). CNDDB subscribers can access these datasets from the same bookmark as the CNDDB layer in BIOS (<a href="https://www.wildlife.ca.gov/Data/BIOS">https://www.wildlife.ca.gov/Data/BIOS</a>).
- 2) North American Bird Conservation Initiative Watch List designation refers to the full species.

Strix occidentalis occidentalis

California spotted owl

- There are no spotted owl EOs in the CNDDB. All spotted owl location information is maintained in a separate database (<a href="https://wildlife.ca.gov/Data/CNDDB/Spotted-Owl-Info">https://wildlife.ca.gov/Data/CNDDB/Spotted-Owl-Info</a>). CNDDB subscribers can access these datasets from the same bookmark as the CNDDB layer in BIOS (<a href="https://www.wildlife.ca.gov/Data/BIOS">https://www.wildlife.ca.gov/Data/BIOS</a>).
- 2) The North American Bird Conservation Initiative Watch List designation refers to the full species.

#### **TYRANNIDAE** (tyrant flycatchers)

Empidonax traillii

willow flycatcher

1) State listing of the full species includes all subspecies.

Empidonax traillii brewsteri

little willow flycatcher

- 1) State listing of the full species includes all subspecies.
- 2) North American Bird Conservation Initiative Watch List designation refers to the full species.

Empidonax traillii extimus

southwestern willow flycatcher

- 1) State listing of the full species includes all subspecies.
- 2) North American Bird Conservation Initiative Watch List designation refers to the full species.

#### LANIIDAE (shrikes)

Lanius Iudovicianus mearnsi

San Clemente loggerhead shrike

1) Subspecific identity of shrikes currently on San Clemente is uncertain. Mundy et al. (1997a, b) provided evidence *L. I. mearnsi* is genetically distinct from *L. I. gambeli* and *L. I. anthonyi*, whereas Patten and Campbell (2000) concluded, based on morphology, that the birds now on San Clemente are intergrades between *L. I. mearnsi* and *L. I. anthonyi*.

January 5, 2023 Page 110 of 116

#### **VIREONIDAE** (vireos)

Vireo bellii arizonae

Arizona Bell's vireo

- 1) North American Bird Conservation Initiative Watch List designation refers to the full species.
- 2) The IUCN designation of Near Threatened refers to the full species.

Vireo bellii pusillus

least Bell's vireo

- 1) North American Bird Conservation Initiative Watch List designation refers to the full species.
- 2) The IUCN designation of Near Threatened refers to the full species.

#### TROGLODYTIDAE (wrens)

Campylorhynchus brunneicapillus sandiegensis

coastal cactus wren

1) CDFW Bird Species of Special Concern report uses the common name San Diego cactus wren.

#### POLIOPTILIDAE (gnatcatchers)

Polioptila californica californica

coastal California gnatcatcher

- 1) CDFW Bird Species of Special Concern report uses the common name Alta California gnatcatcher.
- 2) North American Bird Conservation Initiative Watch List designation refers to the full species.

#### MIMIDAE (mockingbirds and thrashers)

Toxostoma lecontei

Le Conte's thrasher

- 1) CDFW SSC designation refers only to the San Joaquin population.
- 2) The BLM Sensitive designation refers to the San Joaquin Le Conte's thrasher, *Toxostoma lecontei macmillanorum*, although the subspecies concept is not universally recognized.

#### **PASSERELLIDAE** (sparrows)

Artemisiospiza belli belli

Bell's sage sparrow

1) North American Bird Conservation Initiative Watch List designation refers to the full species.

January 5, 2023 Page 111 of 116

#### Artemisiospiza belli clementeae

San Clemente sage sparrow

- 1) Subspecific validity uncertain. Recognized by AOU (1957), but not by Patten and Unitt (2002).
- 2) North American Bird Conservation Initiative Watch List designation refers to the full species.

#### Melospiza melodia graminea

Channel Island song sparrow

1) Subspecific validity is uncertain. This subspecies when referred to as Santa Barbara song sparrow is extinct. However, the subspecies was merged by Patten (2001) with the San Miguel (*M. m. micronyx*), and San Clemente (*M. m. clementae*) song sparrows as the Channel Island song sparrow with the subspecific name *M. m. graminea*.

Melozone crissalis eremophilus

Inyo California towhee

1) Previously in the genus *Pipilo*.

#### PARULIDAE (wood-warblers)

Geothlypis trichas sinuosa

saltmarsh common yellowthroat

1) CDFW Bird Species of Special Concern report uses the common name San Francisco common yellowthroat

#### Setophaga petechia

yellow warbler

1) This element includes the subspecies *S. p. morcormi* and *S. p. brewsteri*, which are tracked under the full species, *S. petechia*, due to difficulty distinguishing them. *S. p. sonorana*, which nests in California only along the Colorado River, is tracked separately.

Setophaga petechia sonorana

Sonoran yellow warbler

1) Nests in California only along the Colorado River. Observations of yellow warblers from other regions are tracked as the full species, *S. petechia*.

January 5, 2023 Page 112 of 116

#### **Mammals**

#### PHYLLOSTOMIDAE (leaf-nosed bats)

Leptonycteris yerbabuenae

lesser long-nosed bat

1) Federal listing uses the scientific name Leptonycteris curasoae yerbabuenae.

#### **VESPERTILIONIDAE** (evening bats)

Lasiurus frantzii

western red bat

1) Nomenclature changed from *Lasiurus blossevillii* to *Lasiurus frantzii* based on Baird et al. 2015, J. of Mammalogy 96(6):1255-1274.

#### **APLODONTIIDAE** (mountain beavers)

Aplodontia rufa californica

Sierra Nevada mountain beaver

1) The IUCN Least Concern designation refers to the full species.

Aplodontia rufa nigra

Point Arena mountain beaver

1) The IUCN Least Concern designation refers to the full species.

Aplodontia rufa phaea

Point Reyes mountain beaver

1) The IUCN Least Concern designation refers to the full species.

#### HETEROMYIDAE (kangaroo rats, pocket mice, and kangaroo mice)

Chaetodipus fallax fallax

northwestern San Diego pocket mouse

1) CDFW SSC designation refers to the full species.

Chaetodipus fallax pallidus

pallid San Diego pocket mouse

1) CDFW SSC designation refers to the full species.

January 5, 2023 Page 113 of 116

Perognathus alticola alticola

white-eared pocket mouse

1) CDFW SSC, BLM Sensitive, and IUCN Endangered designations refer to the full species.

Perognathus alticola inexpectatus

Tehachapi pocket mouse

1) CDFW SSC and IUCN Endangered designations refer to the full species.

Perognathus inornatus

San Joaquin pocket mouse

1) This element includes the subspecies *P. i. inornatus* and *P. i. neglectus*, which are tracked under the full species, *P. inornatus*, due to difficulty distinguishing them. *P. i. inornatus* generally occurs on the eastern side of the San Joaquin Valley, while *P. i. neglectus* generally occurs on the western side. *P. i. psammophilus*, which occurs only in the Salinas Valley, is tracked separately.

#### **CRICETIDAE** (mice, rats, and voles)

Neotoma fuscipes riparia

riparian (=San Joaquin Valley) woodrat

1) This species is currently undergoing taxonomic revision

Reithrodontomys megalotis santacruzae

Santa Cruz harvest mouse

1) Synonymous with Reithrodontomys megalotus longicaudus, Santa Cruz Island population.

#### **CANIDAE** (foxes, wolves, and coyotes)

Urocyon littoralis catalinae

Santa Catalina Island fox

1) The IUCN Near Threatened status refers to the full species.

Urocyon littoralis clementae

San Clemente Island fox

1) The IUCN Near Threatened status refers to the full species.

January 5, 2023 Page 114 of 116

Urocyon littoralis dickeyi

San Nicolas Island fox

1) The IUCN Near Threatened status refers to the full species.

Urocyon littoralis littoralis

San Miguel Island fox

1) The IUCN Near Threatened status refers to the full species.

Urocyon littoralis santacruzae

Santa Cruz Island fox

1) The IUCN Near Threatened status refers to the full species.

Urocyon littoralis santarosae

Santa Rosa Island fox

1) The IUCN Near Threatened status refers to the full species.

#### **MUSTELIDAE** (weasels and relatives)

Enhydra lutris nereis

southern sea otter

1) The IUCN Endangered designation refers to the full species.

Lontra canadensis sonora

southwestern river otter

1) CDFW SSC status refers only to the subspecies *L. canadensis sonora*, which is known in California only from the Colorado River.

Martes caurina humboldtensis

Humboldt marten

1) Federal status refers to the coastal DPS of Pacific marten (Martes caurina)

January 5, 2023 Page 115 of 116

#### Pekania pennanti

Fisher

1) In 2004, the West Coast DPS of fisher became a candidate for federal listing, and underwent numerous evaluations, proposed rules, and revisions in subsequent years. In 2020, the West Coast DPS was further divided into the Southern Sierra Nevada DPS and the Northern California/Southern Oregon DPS (which also includes Northern Sierra Nevada and Southern Oregon Cascades subpopulations which arose from reintroductions). State threatened and federal endangered statuses apply only to the Southern Sierra Nevada ESU/DPS. State listing defines the northern limit of the SSN ESU as the Merced River, while federal listing uses the Tuolumne River.

#### **BOVIDAE** (sheep and relatives)

Ovis canadensis nelsoni

desert bighorn sheep

- 1) Desert bighorn sheep (*O. c. nelsoni*) in the Peninsular Ranges are tracked as a metapopulation of the subspecies, Peninsular bighorn sheep DPS (*O. c. nelsoni* pop. 2)
- 2) Fully Protected with the exception of legal hunting conducted in compliance with California Code of Regulations 14 CCR 362.

Ovis canadensis nelsoni pop. 2

Peninsular bighorn sheep DPS

1) The subspecies peninsular bighorn sheep (*O. c. cremnobates*) has been synonymized with *O. c. nelsoni* (Wehausen & Ramey 1993). Peninsular bighorn sheep are now considered to be a metapopulation and are recognized as a federal Distinct Population Segment (DPS).

January 5, 2023 Page 116 of 116

# Appendix B-2 USFWS IPaC Report



# United States Department of the Interior



#### FISH AND WILDLIFE SERVICE

Reno Fish And Wildlife Office 1340 Financial Boulevard, Suite 234 Reno, NV 89502-7147 Phone: (775) 861-6300 Fax: (775) 861-6301

In Reply Refer To: December 08, 2022

Project Code: 2023-0022852 Project Name: BIH\_RSA\_Project

Subject: List of threatened and endangered species that may occur in your proposed project

location or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological

evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

**Migratory Birds**: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

# Attachment(s):

- Official Species List
- USFWS National Wildlife Refuges and Fish Hatcheries
- Migratory Birds
- Wetlands

12/08/2022

# **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Reno Fish And Wildlife Office 1340 Financial Boulevard, Suite 234 Reno, NV 89502-7147 (775) 861-6300

# **Project Summary**

Project Code: 2023-0022852 Project Name: BIH\_RSA\_Project

Project Type: Airport - Maintenance/Modification

Project Description: Inyo County seeks to bring the Runway Safety Area (RSAs) off both the

Runway 12 and 30 ends at Bishop Airport into compliance with FAA requirements (RSA Project). The RSA improvements require certain

changes to the Airport Layout Plan (ALP).

#### **Project Location:**

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/@37.372660350000004">https://www.google.com/maps/@37.372660350000004</a>,-118.36411243640129,14z



Counties: Inyo County, California

# **Endangered Species Act Species**

There is a total of 6 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### **Birds**

NAME STATUS

#### Southwestern Willow Flycatcher *Empidonax traillii extimus*

Endangered

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: https://ecos.fws.gov/ecp/species/6749

#### Yellow-billed Cuckoo Coccyzus americanus

Threatened

Population: Western U.S. DPS

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: <a href="https://ecos.fws.gov/ecp/species/3911">https://ecos.fws.gov/ecp/species/3911</a>

#### **Fishes**

NAME STATUS

#### Owens Pupfish Cyprinodon radiosus

Endangered

No critical habitat has been designated for this species. Species profile: <a href="https://ecos.fws.gov/ecp/species/4982">https://ecos.fws.gov/ecp/species/4982</a>

#### Owens Tui Chub Gila bicolor ssp. snyderi

Endangered

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

Species profile: <a href="https://ecos.fws.gov/ecp/species/7289">https://ecos.fws.gov/ecp/species/7289</a>

#### **Insects**

NAME STATUS

Monarch Butterfly Danaus plexippus

Candidate

No critical habitat has been designated for this species. Species profile: <a href="https://ecos.fws.gov/ecp/species/9743">https://ecos.fws.gov/ecp/species/9743</a>

## **Flowering Plants**

NAME

Fish Slough Milk-vetch Astragalus lentiginosus var. piscinensis

Threatened

There is **final** critical habitat for this species. Your location does not overlap the critical habitat. Species profile: <a href="https://ecos.fws.gov/ecp/species/7947">https://ecos.fws.gov/ecp/species/7947</a>

#### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

# USFWS National Wildlife Refuge Lands And Fish Hatcheries

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS OR FISH HATCHERIES WITHIN YOUR PROJECT AREA.

12/08/2022

#### **Migratory Birds**

Certain birds are protected under the Migratory Bird Treaty Act<sup>1</sup> and the Bald and Golden Eagle Protection Act<sup>2</sup>.

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the E-bird data mapping tool (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

| NAME                                                                                                                                                                                                                                                                      | BREEDING<br>SEASON        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| American White Pelican <i>pelecanus erythrorhynchos</i> This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <a href="https://ecos.fws.gov/ecp/species/6886">https://ecos.fws.gov/ecp/species/6886</a> | Breeds Apr 1 to<br>Aug 31 |
| Bald Eagle <i>Haliaeetus leucocephalus</i> This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.            | Breeds Dec 1 to<br>Aug 31 |

| NAME                                                                                                                                                                                                                                          | BREEDING<br>SEASON         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Black Swift <i>Cypseloides niger</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/8878">https://ecos.fws.gov/ecp/species/8878</a>           | Breeds Jun 15<br>to Sep 10 |
| Black Tern <i>Chlidonias niger</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/3093">https://ecos.fws.gov/ecp/species/3093</a>             | Breeds May 15<br>to Aug 20 |
| California Gull <i>Larus californicus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.                                                                                                | Breeds Mar 1 to<br>Jul 31  |
| Cassin's Finch <i>Carpodacus cassinii</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/9462">https://ecos.fws.gov/ecp/species/9462</a>      | Breeds May 15<br>to Jul 15 |
| Clark's Grebe <i>Aechmophorus clarkii</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.                                                                                                | Breeds Jun 1 to<br>Aug 31  |
| Evening Grosbeak <i>Coccothraustes vespertinus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.                                                                                       | Breeds May 15<br>to Aug 10 |
| Franklin's Gull <i>Leucophaeus pipixcan</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.                                                                                              | Breeds May 1<br>to Jul 31  |
| Lesser Yellowlegs <i>Tringa flavipes</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/9679">https://ecos.fws.gov/ecp/species/9679</a>       | Breeds<br>elsewhere        |
| Lewis's Woodpecker <i>Melanerpes lewis</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/9408">https://ecos.fws.gov/ecp/species/9408</a>     | Breeds Apr 20<br>to Sep 30 |
| Olive-sided Flycatcher <i>Contopus cooperi</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/3914">https://ecos.fws.gov/ecp/species/3914</a> | Breeds May 20<br>to Aug 31 |
| Pinyon Jay <i>Gymnorhinus cyanocephalus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/9420">https://ecos.fws.gov/ecp/species/9420</a>    | Breeds Feb 15<br>to Jul 15 |

| NAME                                                                                                                                                                                                                                                        | BREEDING<br>SEASON         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Rufous Hummingbird <i>selasphorus rufus</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/8002">https://ecos.fws.gov/ecp/species/8002</a>                  | Breeds Apr 15<br>to Jul 15 |
| Sage Thrasher <i>Oreoscoptes montanus</i> This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA <a href="https://ecos.fws.gov/ecp/species/9433">https://ecos.fws.gov/ecp/species/9433</a> | Breeds Apr 15<br>to Aug 10 |
| Virginia's Warbler <i>Vermivora virginiae</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/9441">https://ecos.fws.gov/ecp/species/9441</a>                | Breeds May 1<br>to Jul 31  |
| Western Grebe <i>aechmophorus occidentalis</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <a href="https://ecos.fws.gov/ecp/species/6743">https://ecos.fws.gov/ecp/species/6743</a>               | Breeds Jun 1 to<br>Aug 31  |
| Willet <i>Tringa semipalmata</i> This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.                                                                                                                       | Breeds Apr 20<br>to Aug 5  |

#### **Probability Of Presence Summary**

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

#### **Probability of Presence** (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.

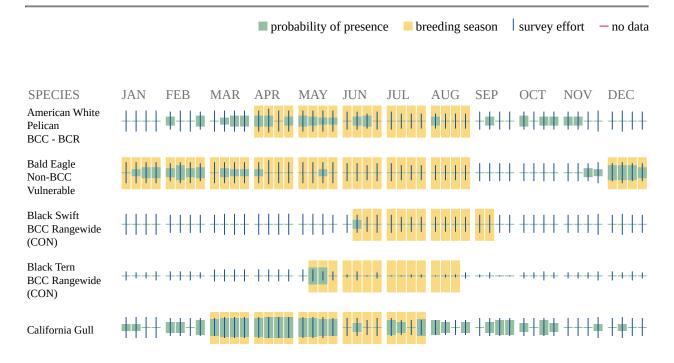
2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

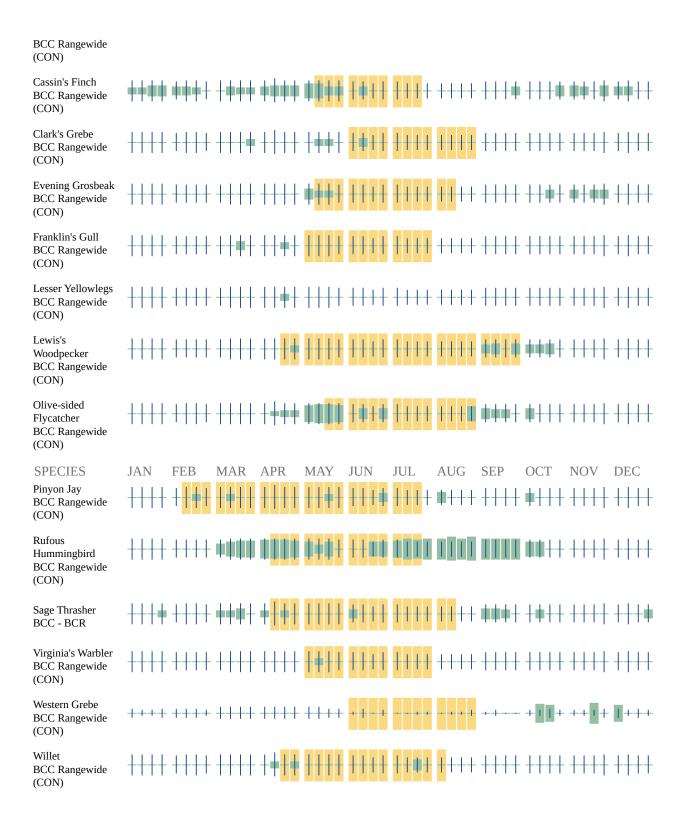
3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

#### **Breeding Season** (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

#### Survey Effort (|)


Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


#### No Data (-)

A week is marked as having no data if there were no survey events for that week.

#### **Survey Timeframe**

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.





#### Additional information can be found using the following links:

Birds of Conservation Concern <a href="https://www.fws.gov/program/migratory-birds/species">https://www.fws.gov/program/migratory-birds/species</a>

Measures for avoiding and minimizing impacts to birds <a href="https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds">https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds</a>

Nationwide conservation measures for birds <a href="https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf">https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf</a>

#### **Migratory Birds FAQ**

# Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

## What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern</u> (<u>BCC</u>) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <a href="Rapid Avian Information">Rapid Avian Information</a> Locator (RAIL) Tool.

# What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may query your location using the <u>RAIL Tool</u> and look at the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

#### What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <a href="Eagle Act">Eagle Act</a> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

#### Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <a href="Northeast Ocean Data Portal">Northeast Ocean Data Portal</a>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <a href="NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf">Outer Continental Shelf</a> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

#### What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

#### Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

12/08/2022

#### Wetlands

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

WETLAND INFORMATION WAS NOT AVAILABLE WHEN THIS SPECIES LIST WAS GENERATED. PLEASE VISIT <a href="https://www.fws.gov/wetlands/data/mapper.html">https://www.fws.gov/wetlands/data/mapper.html</a> OR CONTACT THE FIELD OFFICE FOR FURTHER INFORMATION.

#### **IPaC User Contact Information**

Agency: Environmental Science Associates

Name: Natalie Lamas Address: 2600 Capitol Ave

Address Line 2: Suite 200 City: Sacramento

State: CA Zip: 95816

Email natalieglamas@icloud.com

Phone: 9165644500

# Appendix C Aquatic Resources Delineation Report



#### **DRAFT**

# RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Aquatic Resources Delineation Report

Prepared for Inyo County Public Works July 2023





#### **DRAFT**

# RUNWAY 12/30 SAFETY AREA IMPROVEMENT PROJECT AT BISHOP AIRPORT

Aquatic Resources Delineation Report

Prepared for Inyo County Public Works

July 2023

2600 Capitol Avenue Suite 200 Sacramento, CA 95816 916.564.4500 esassoc.com

Atlanta Orlando San Diego Bend Palm Beach County San Francisco Pasadena Camarillo San Jose Irvine Pensacola Sarasota Petaluma Seattle Los Angeles Mobile Portland Tampa Oakland Sacramento



OUR COMMITMENT TO SUSTAINABILITY | ESA helps a variety of public and private sector clients plan and prepare for climate change and emerging regulations that limit GHG emissions. ESA is a registered assessor with the California Climate Action Registry, a Climate Leader, and founding reporter for the Climate Registry. ESA is also a corporate member of the U.S. Green Building Council and the Business Council on Climate Change (BC3). Internally, ESA has adopted a Sustainability Vision and Policy Statement and a plan to reduce waste and energy within our operations. This document was produced using recycled paper.

#### **TABLE OF CONTENTS**

# Runway 12/30 Safety Area Improvement Project at Bishop Airport

|         |                                               | <u>Page</u> |
|---------|-----------------------------------------------|-------------|
| Chante  | r 1, Introduction                             | 1-1         |
| 1.      |                                               |             |
| 1.      |                                               |             |
| ••      | 1.2.1 Directions to the Survey Area           |             |
| 1.      |                                               |             |
| Chapte  | r 2, Existing Conditions                      | 2-1         |
| 2.      |                                               |             |
| 2.      | 2 Vegetation Communities and Land Cover Types | 2-1         |
|         | 2.2.1 Wetland Vegetation Communities          | 2-3         |
|         | 2.2.2 Upland Habitat                          |             |
| 2.      | 3 Soils                                       | 2-5         |
| 2.      | 4 Hydrology                                   | 2-7         |
| 2.      |                                               |             |
| Chapte  | r 3, Regulatory Framework                     | 3-1         |
| · 3.    | , ,                                           |             |
|         | 3.1.1 Clean Water Act                         | 3-1         |
| 3.      | 2 Waters of the State                         | 3-4         |
| 3.      | 3 Rivers, Streams, and Lakes                  | 3-4         |
| Chapte  | r 4, Methodology                              | 4-1         |
| 4.      |                                               |             |
|         | 4.1.1 National Wetlands Inventory             | 4-1         |
| 4.      | 2 Field Survey Methods                        | 4-1         |
|         | 4.2.1 Waters of the U.S.                      | 4-2         |
| Chapte  | r 5, Results                                  | 5-1         |
| •<br>5. | · · · · · · · · · · · · · · · · · · ·         |             |
|         | 5.1.1 Wetlands                                |             |
|         | 5.1.2 Other Waters                            | 5-2         |
| 5.      | 2 Regulatory Analysis                         | 5-3         |
|         | 5.2.1 Waters of the U.S                       |             |
|         | 5.2.2 Waters of the State                     |             |
|         | 5.2.3 Rivers, Streams, and Lakes              |             |
| 5.      |                                               |             |
| Chapte  | r 6, References Cited                         | 6-1         |

#### **Appendices**

| C-1. Soils Rep | ort |
|----------------|-----|
|----------------|-----|

- C-2. Antecedent Precipitation Tool Results
- C-3. Data Sheets
- C-4. ORM Aquatic Resources Spreadsheet
- C-5. Representative Site Photographs

#### **List of Figures**

| Figure 1    | Bishop Airport Location                                                    |       |
|-------------|----------------------------------------------------------------------------|-------|
| Figure 2    | Bishop Airport Vicinity Map                                                |       |
| Figure 3    | Natural Communities and Land Cover Types                                   |       |
| Figure 4    | Soil Map                                                                   |       |
| Figure 5    | Hydrology – Runway 12 End                                                  |       |
| Figure 6    |                                                                            |       |
|             | Delineation of Wetlands and Other Waters of the U.S                        |       |
| Figure 7-2  | Delineation of Wetlands and Other Waters of the U.S                        | . 5-7 |
| Figure 7-3  | Delineation of Wetlands and Other Waters of the U.S                        | . 5-8 |
| Figure 7-4  | Delineation of Wetlands and Other Waters of the U.S                        | .5-9  |
| Figure 7-5  | Delineation of Wetlands and Other Waters of the U.S                        | 5-10  |
| Figure 7-6  | Delineated Wetlands and Proposed Project – Runway 12                       | .5-1  |
| •           | Delineated Wetlands and Proposed Project – Runway 30                       |       |
|             |                                                                            |       |
| List of Tab | iles                                                                       |       |
| Table 2-1   | Vegetation Communities and Land Cover Types within the Survey Area         | .2-3  |
| Table 2-2   | Survey Area Soils                                                          | .2-5  |
|             | Antecedent Precipitation Tool Results for Project Site on November 1, 2022 | .2-7  |
| Table 2-4   | Wets Table: Monthly Total Precipitation For BISHOP AIRPORT, CA             |       |
| Table 5-1   | Aquatic Resources within the Survey Area                                   |       |
| Table 5-2   | Potential Waters of the U.S.                                               |       |
| Table 5-3   | Features Potentially Subject to Section 1600 et seq. of the Fish and Game  |       |
|             | Code                                                                       | .5-5  |

#### **CHAPTER 1**

#### Introduction

Environmental Science Associates (ESA) conducted an aquatic resources delineation for the Runway Safety Area Improvement Project at Bishop Airport (Proposed Project) in Inyo County, California (County). This report presents the regulatory framework, methods, and results of the delineation of aquatic resources within the Project area. The survey area for this delineation report includes approximately 403 acres in Inyo County and encompasses areas where Project activities are expected to occur. The purpose of the delineation was to determine the extent of state and federal jurisdiction within each survey area potentially subject to regulation by the U.S. Army Corps of Engineers (USACE) under Section 404 of the Clean Water Act (CWA), Regional Water Quality Control Board (RWQCB) under Section 401 of the CWA, and the Porter-Cologne Water Quality Control Act (Porter-Cologne Act) and California Department of Fish and Wildlife (CDFW) under Section 1602 of the California Fish and Game Code.

The aquatic resources delineation was conducted in accordance with the Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987), A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States (USACE 2008a), Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (USACE 2008b), and State Wetland Definition and Procedures for Discharges of Dredged or Fill Material to Waters of the State (SWRCB 2020), where applicable. ESA also reviewed the USACE Sacramento District Minimum Standards for Acceptance of Aquatic Resources Delineation Reports (USACE 2017), Updated Map and Drawing Standards for the South Pacific Division Regulatory Program (USACE 2016), and Aquatic Resource Delineation Report Submittal Workshop (USACE 2019) for information to include in the report, figures, and supporting data.

#### 1.1 Project Description

Runway 12/30 currently has a nonstandard Runway Safety Area (RSA) with portions featuring excessive slopes, noncompliant grading, and/or excessive vegetation. In addition, a Los Angeles Department Of Water And Power (LADWP) service road currently runs through the RSA off the Runway 12 end and the airport security fence runs through the RSA off both the Runway 12 and Runway 30 ends. Inyo County seeks to correct the existing deficiencies in the RSA so it can meet FAA standards for a runway of its type (Proposed Project). The RSA improvements require certain changes to the Airport Layout Plan (ALP) and would be funded, in part, by FAA conferred grants. The Proposed Project is subject to discretionary approval on the part of the County and is thus subject to the California Environmental Quality Act (CEQA).

#### 1.2 Survey Location

The Project location, as depicted on **Figure 1**, is approximately 2 miles east of the town of Bishop, California in Inyo County on the property of the Bishop Airport. The survey area, as depicted on **Figure 2**, is bordered by North Fork Bishop Creek to the north, Owens River to the east, Line Street to the south, and CA route 395 to the west. The survey location is on the Bishop, Poleta Canyon, Laws, and Fish Slough quadrangles 7.5-Minute series. The elevation of the survey location ranges from 4,080 feet to 4,130 feet above sea level.

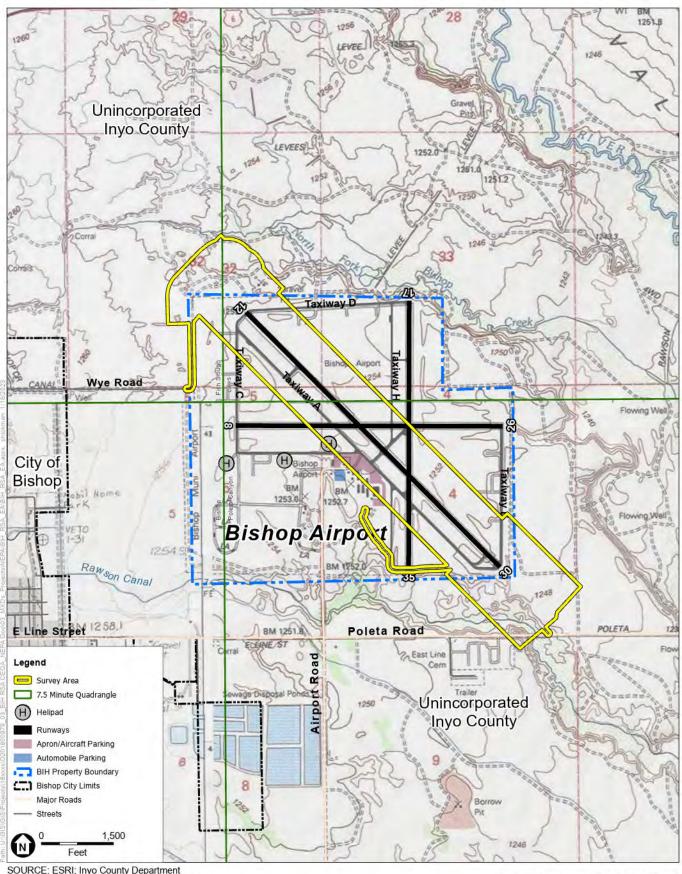
#### 1.2.1 Directions to the Survey Area

To navigate to the survey area (37.372987, -118.368002) from Bishop, CA:

- Drive east on East Line Street
- Turn left on Airport Road and continue north 0.7 miles

#### 1.3 Contact Information

#### **Applicant**


Ashley Helms
Deputy Director, Airports
Inyo County Department of Public Works
PO Box Q
Independence, CA93526
(760) 878-0201
ahelms@inyocounty.us

#### Delineator(s)

Anna Schwyter
Wetland Ecologist
Environmental Science Associates
2600 Capitol Ave Suite 200
Sacramento, CA 95817
(916) 564-4500
aschwyter@esassoc.com



Figure 1
Bishop Airport Location



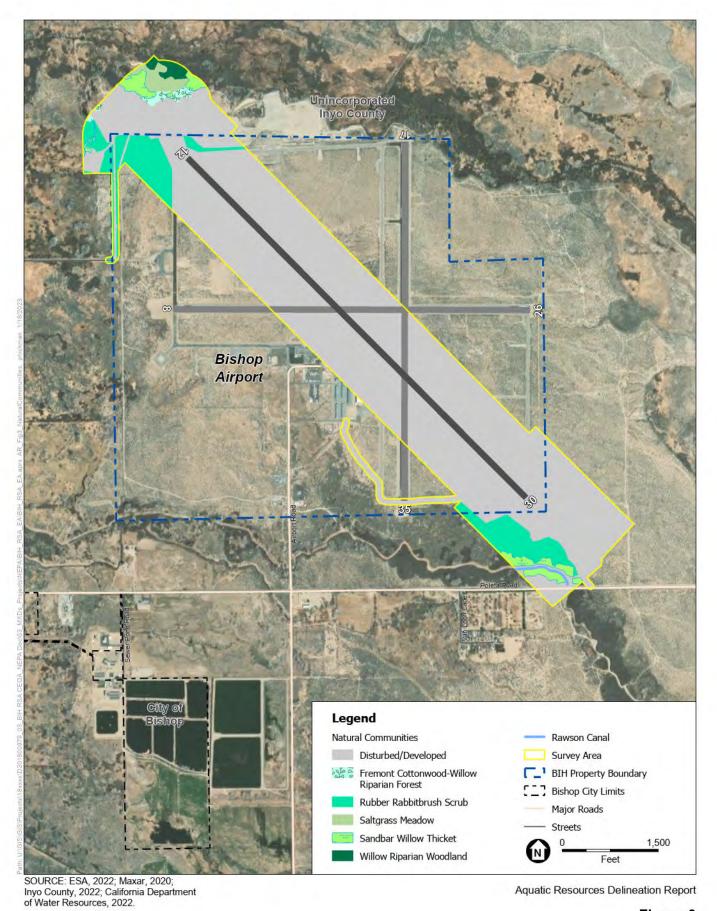
SOURCE: ESRI; Inyo County Department of Public Works; ESA, 2020; USGSTopo, 2021.

Aquatic Resources Delineation Report

#### **CHAPTER 2**

## **Existing Conditions**

#### 2.1 Aquatic Resources Delineation Survey Area


The Project survey area encompasses approximately 403 acres. The survey area includes the area of the proposed runway expansion along with a 100-foot buffer to account for moving wildlife and hydrological resources. The survey area has an average annual precipitation of 4.84 inches. Temperatures range from an average annual maximum temperature of 99.7°F to an average annual minimum temperature of 54.5°F.

The areas surrounding Bishop Airport are generally disturbed. Areas to the north of the Airport—beyond Runway 12—were once used as a gravel quarry and are now frequently used for recreation, including off highway vehicle (OHV) use. On the south end of the survey area—beyond Runway 30—there is riparian scrub on the north and south banks of Rawson Canal. This riparian scrub was too dense to survey on foot, and the southern portion was not accessible due to Rawson Canal and barbed wire fencing. The survey area is not irrigated and is graded including vegetation management to comply with airport regulations. This region has been affected by drought within the watershed in the past few decades.

The survey area was investigated for potential jurisdictional wetlands and non-wetland habitats. The survey area was accessible by foot or vehicle and was walked during surveys, with exception of the area of dense riparian scrub mentioned above, taking care to stay within the 100-foot buffer area and within approved lands.

#### 2.2 Vegetation Communities and Land Cover Types

Vegetation communities and land cover types were mapped in the survey area (**Figure 3**). These include upland habitats (rubber rabbitbrush scrub and disturbed/developed), wetland/riparian habitats (Fremont cottonwood-willow riparian forest, sandbar willow thicket, willow riparian woodland, saltgrass meadow), and canals (Rawson Canal). The area of all vegetation communities and land cover types are included in **Table 2-1** and the vegetation communities found in the survey area are described below.



ESA

Figure 3
Natural Communities and Land Cover Types

Table 2-1
VEGETATION COMMUNITIES AND LAND COVER TYPES WITHIN THE SURVEY AREA

| Vegetation Community/Land Cover Type            | Acreage |  |  |  |  |  |  |
|-------------------------------------------------|---------|--|--|--|--|--|--|
| Open Water, Riparian, and Wetlands <sup>a</sup> |         |  |  |  |  |  |  |
| Sandbar Willow Thicket                          | 9.69    |  |  |  |  |  |  |
| Fremont Cottonwood-Willow Riparian Forest       | 2.54    |  |  |  |  |  |  |
| Willow Riparian Woodland                        | 2.73    |  |  |  |  |  |  |
| Saltgrass Meadow                                | 4.60    |  |  |  |  |  |  |
| Uplands                                         |         |  |  |  |  |  |  |
| Rubber rabbitbrush scrub                        | 35.93   |  |  |  |  |  |  |
| Developed/Disturbed Land Cover Types            |         |  |  |  |  |  |  |
| Disturbed/Developed                             | 347.68  |  |  |  |  |  |  |

#### NOTE:

SOURCE: Environmental Science Associates, 2022; CNPS 2022

#### 2.2.1 Wetland Vegetation Communities

Wetland communities at the far north and south ends of the survey area were identified through research using the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) database and field surveys conducted on November 1, 2022. The USFWS NWI identifies the presence of freshwater forested/shrub riparian habitat slightly within and immediately surrounding the survey area. Field surveys confirm that these areas consist of perennial herbaceous vegetation, shrubby willow trees (*Salix* sp.), and rose (*Rosa woodsii*) bushes at the northern end—beyond Runway 12.

Rawson Canal is a perennial stream located on the southeastern end—beyond Runway 30—and is potential habitat for wetland and stream species. Rawson Canal is located within the Crowley Lake Watershed and empties into the Owens River. Small areas of willow shrubs and rose thicket are located to the south along Rawson Canal. The wetland vegetation communities within the survey area are described below.

#### Sandbar willow thicket (Salix exigua Alliance)

Dense thickets of sandbar willow (*Salix exigua*) are present within the northwestern end of the survey area—beyond Runway 12. Stands are almost uniformly comprised of sandbar willow, with interspersed Wood's rose (*Rose woodsii*). Due to high density of sandbar willow, very little herbaceous cover is present. Breaks in this community contain small patches of cattail (*Typha* sp.). Along Rawson Canal, beyond Runway 30, small clusters of common reeds (*Phragmites australis*) are also present within this community.

a U.S. Fish and Wildlife Service definition of wetland

# Fremont cottonwood-willow riparian forest (*Populus fremontii-Salix gooddingii-S. lasiolepis*, *S. laevigata* Alliance)

Patches of Fremont cottonwood (*Populus fremontii*) are scattered along the north edge of the survey area, beyond Runway 12, primarily near the transition from upland to riparian areas. Cooccurring species include black willow (*Salix gooddingii*), arroyo willow (*Salix lasiolepis*), and red willow (*Salix laevigata*). Herbaceous cover associated with this community is variable and includes stands of perennial pepperweed (*Lepidium latifolium*), saltgrass (*Distichlis spicata*), and rushes (*Juncus* spp.).

# Willow riparian woodland (Salix gooddingii-S. lasiolepis Salix laevigata Alliance)

Small areas of willow riparian woodland are present in the north portion of the survey area, at its closest proximity to North Fork Bishop Creek, beyond Runway 12. Black willow, red willow and arroyo willow are dominant or co-dominant in this vegetation alliance. Areas of sandbar willow and Wood's rose occur in the shrub layer, with an herbaceous layer including Indian hemp dogbane (*Apocynum cannabium*), saltgrass, and reeds.

#### Saltgrass meadow (Distichlis spicata Alliance)

An open saltgrass meadow is located in the survey area northwest of Runway 12. Additional component species of this community include common spike rush (*Eleocharis macrostachya*), scratchgrass (*Muhlenbergia asperifolia*), and rushes. The driest portion of this meadow includes small areas of rabbitbrush, while the wettest includes cattail and alkali bulrush (*Bolboschoenus maritimus*) (Sawyer et al. 2009).

#### 2.2.2 Upland Habitat

The survey area primarily consists of upland habitat. This includes areas with a mixture of low-intensity development, open space, and shrub/scrub habitat. The open areas surrounding the runway are routinely graded and maintained by the Airport operations staff for general aviation usage, which requires low-growing vegetation. The area to the northwest of the survey area was previously used for gravel mining, and is largely abandoned, except for occasional OHV use. The LADWP regularly patrol this area to ensure that there are no illegal dumping activities that could compromise the integrity of local water resources. The shrub/scrub habitat consists of primarily low-growing ruderal grassland and common shrub species. The upland vegetation communities within the survey area are described below.

#### Rubber rabbitbrush scrub (Ericameria nauseosa Alliance)

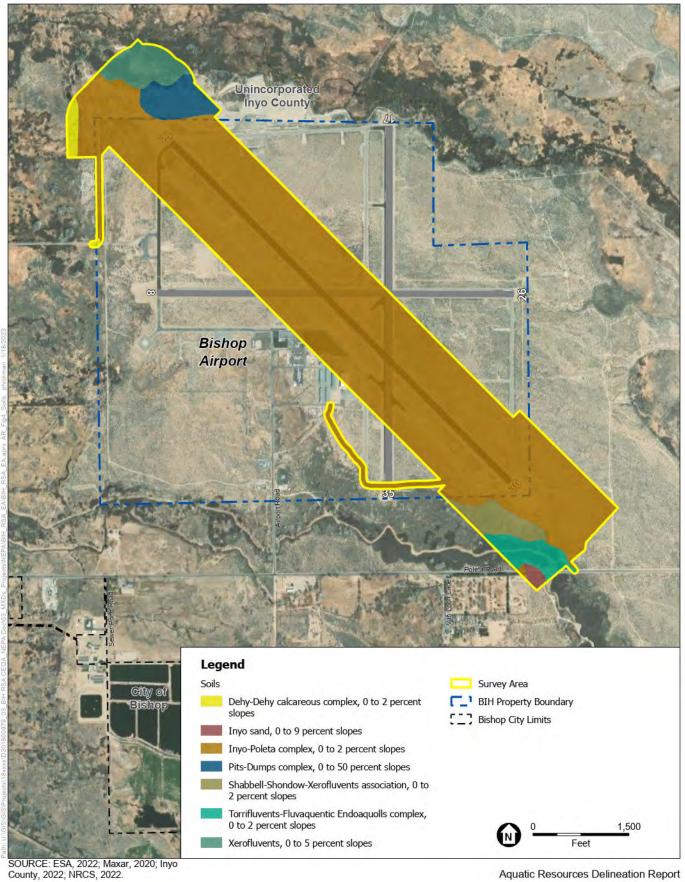
Airport property and surrounding areas outside of the actively maintained runway and taxiway object free areas consist of rubber rabbitbrush (*Ericameria nauseosa*) as the primary shrub species, with interspersed greasewood (*Sarcobatus vermiculatus*), and saltbush (*Atriplex* spp.). The herbaceous cover is general sparse, and includes buckwheat, cryptantha, and short-podded mustard.

#### **Disturbed/Developed**

Airport infrastructure (buildings, runways, taxiways, etc.), gravel and paved roads, and actively managed areas are bare or have sparse vegetation. Within the maintained object-free areas adjacent to the runways, low-growing angle-stemmed buckwheat (*Eriogonum maculatum*), cryptantha (*Cryptantha micrantha*), and short-podded mustard (*Hirschfeldia incana*) are present.

#### 2.3 Soils

Soils within the survey area are shown in **Figure 4** (USDA 2020). The survey area contains seven soil types belonging to five soil series (Dehy, Inyo, Poleta, Shabbell, Shondow). Four of these soil types are considered hydric, according to the Natural Resources Conservation Service (NRCS). Additional details can be found in **Table 2-2** and in the NRCS soil report (**Appendix C-1** of this Technical Report).


The following resources regarding soils were reviewed:

- 1. *Hydric Soils List of California*, 2022 (NRCS 2022a) https://www.nrcs.usda.gov/publications/query-by-state.html
- 2. NRCS's *Web Soil Survey*, queried to determine the soils that have been mapped within the survey area (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx; NRCS 2022b)

TABLE 2-2 SURVEY AREA SOILS

| Soil Units                                                                  | Description                                                                   | Hydric Soil List Y/N |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|
| Dehy-Dehy calcareous complex, 0 to 2 percent slopes                         | Formed on alluvial fans and stream terraces, somewhat poorly drained          | Y                    |
| Inyo sand, 0 to 9 percent slopes                                            | Formed on dunes and stream terraces, excessively drained with low runoff      | N                    |
| Inyo-Poleta complex, 0 to 2 percent slopes                                  | Formed on stream terraces, excessively drained with low runnoff               | N                    |
| Pits-Dumps complex, 0 to 50 percent slopes                                  | Anthropogenic soil found on valley floors and alluvial fans                   | N                    |
| Shabbell-Shondow-<br>Xerofluvents association, 0<br>to 2 percent slopes     | Formed on stream terraces, well drained with very low runnoff                 | Y                    |
| Torrifluvents-Fluvaquentic<br>Endoaquolls complex, 0 to<br>2 percent slopes | Loamy soil formed on stream terraces and depressions, somewhat poorly drained | Y                    |
| Xerofluvents, 0 to 5 percent slopes                                         | Gravelly sandy loam soils formed in drainageways, poorly drained              | Y                    |

SOURCE: NRCS, 2022.



Aquatic Resources Delineation Report

Figure 4 Soil Map



#### 2.4 Hydrology

The survey area lies within the Owens River watershed (USGS Hydrologic Unit Code 180901020705) with a drainage area of 2,604 mi<sup>2</sup>, which drains into and through the Owens Valley, an arid basin between the eastern slope of the Sierra Nevada Mountains and the western faces of the Inyo and White Mountains. The river terminates at the endorheic Owens Lake south of Lone Pine, CA. The Owens River hydrologic cycle is driven by snowmelt from the Sierra Nevada, Inyo, and White Mountains. The surface hydrology in the survey area has been altered by urban development to include agricultural irrigation ditches and the Los Angeles Aqueduct system.

North Fork Bishop Creek, a tributary to the Owens River, runs northeast and is located beyond the northern boundary of the survey area. Bishop Creek is the largest tributary to the Owens River with three forks, the North, Middle, and South, which converge below the Intake Two reservoir. Bishop Creek converges with the Owens River 2.2 miles southeast of the survey area. At the south end of the survey area Rawson Canal runs southeast and drains to Rawson Ponds, and further downstream is connected to the Owens River via a manmade drainage canal.

ESA reviewed the stream gage information available for the region and there are no stream gages local enough to provide relevant information for survey area conditions.

#### 2.5 Climate

The USACE Antecedent Precipitation Tool was used to query the field survey date and HUC12 Watershed (180901020705). The results are included in **Table 2-3** and as **Appendix C-2** of this Technical Report. The tool indicated that field surveys were conducted during the dry season with an average score of 15.0 (wetter than normal). During delineations in November the field site had normal late dry season conditions for California. In addition, the Agricultural Applied Climate Information System Wetlands (WETS) climate table for the Bishop Airport is included below (**Table 2-4**; NOAA 2022).

Table 2-3
Antecedent Precipitation Tool Results for Project Site on November 1, 2022

| No. of Sampling Points PDSI Class |                | Season     | Antecedent<br>Precipitation Score | Antecedent<br>Precipitation Condition |  |  |
|-----------------------------------|----------------|------------|-----------------------------------|---------------------------------------|--|--|
| 8                                 | Severe Drought | Dry Season | 15.0                              | Wetter than Normal                    |  |  |

SOURCE: Antecedent Precipitation Tool (v.1.0.19), generated on 11/14/2022

**TABLE 2-4** WETS TABLE: MONTHLY TOTAL PRECIPITATION FOR BISHOP AIRPORT, CA

| Year                   | Jan  | Feb  | Mar  | Apr  | Мау  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Annual |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| 2017                   | 5.23 | 2.21 | 0.09 | 0.92 | 0.35 | Т    | Т    | 0.02 | Т    | 0    | 0.16 | Т    | 8.98   |
| 2018                   | 0.04 | Т    | М    | 0.4  | 0.27 | 0    | 1.52 | 0.01 | 0.06 | 0.4  | 0.91 | 0.26 | М      |
| 2019                   | 1.89 | 2.42 | 1.92 | Т    | 0.89 | 0.03 | Т    | Т    | 0.01 | 0    | 0.91 | 0.19 | 8.26   |
| 2020                   | 0.06 | 0.16 | 0.45 | 0.48 | Т    | Т    | Т    | Т    | Т    | 0    | Т    | 0.21 | 1.36   |
| 2021                   | 1.09 | 0.31 | 0.01 | Т    | Т    | Т    | 0.06 | 0.01 | Т    | 0.65 | 0.13 | 3.72 | 5.98   |
| 2022<br>(current year) | 0    | Т    | 0.25 | Т    | 0    | Т    | 0.17 | 0.72 | 1.09 | Т    | М    | М    | М      |
| Mean<br>(2017-2022)    | 1.39 | 0.85 | 0.54 | 0.3  | 0.25 | 0.01 | 0.29 | 0.13 | 0.19 | 0.18 | 0.42 | 0.88 | 6.15   |

#### NOTE:

SOURCE: USDA 2022.

 <sup>1</sup> M = missing and is used when more than one day of data is missing for a month.
 2 T = trace and is used when a precipitation is <0.01 inch.</li>

#### **CHAPTER 3**

### Regulatory Framework

#### 3.1 Waters of the U.S.

#### 3.1.1 Clean Water Act

The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters. The basis of the CWA was enacted in 1948 and was called the Federal Water Pollution Control Act, but the Act was significantly reorganized and expanded in 1972. "Clean Water Act" became the Act's common name with amendments in 1972.

In 1986, the term "waters of the United States" was defined as follows (33 CFR 328.3[a]):

- (1) All waters which are currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;
- (2) All interstate waters including interstate wetlands;
- (3) All other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation or destruction of which could affect interstate or foreign commerce including any such waters:
  - (i) Which are or could be used by interstate or foreign travelers for recreational or other purposes; or
  - (ii) From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
  - (iii) Which are used or could be used for industrial purpose by industries in interstate commerce;
- (4) All impoundments of waters otherwise defined as waters of the United States under the definition;
- (5) Tributaries of waters identified in paragraphs (a)(1) through (4) of this section;
- (6) The territorial seas; and
- (7) Wetlands adjacent to waters (other than waters that are themselves wetlands) identified in paragraphs (a)(1) through (6) of this section.
- (8) Waters of the United States do not include prior converted cropland. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for

the purposes of the Clean Water Act, the final authority regarding Clean Water Act jurisdiction remains with Environmental Protection Agency (EPA).

Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of CWA (other than cooling ponds as defined in 40 CFR 423.11(m) which also meet the criteria of this definition) are not waters of the United States.

Wetlands (including swamps, bogs, seasonal wetlands, seeps, marshes, and similar areas) are also considered waters of the U.S. (subject to the significant nexus test, described below), and are defined by USACE as "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions" (33 CFR 328.3[b]; 40 CFR 230.3[t]). Indicators of three wetland parameters (i.e., hydric soils, hydrophytic vegetation, and wetlands hydrology), as determined by field investigation, must be present for a site to be classified as a wetland by USACE (Environmental Laboratory 1987).

Section 401 of the CWA gives the state authority to grant, deny, or waive certification of proposed federally licensed or permitted activities resulting in discharge to waters of the U.S. The State Water Resources Control Board (State Water Board) directly regulates multi-regional projects and supports the Section 401 certification and wetlands program statewide. The Regional Water Quality Control Board (RWQCB) regulates activities pursuant to Section 401(a)(1) of the federal CWA, which specifies that certification from the State is required for any applicant requesting a federal license or permit to conduct any activity including but not limited to the construction or operation of facilities that may result in any discharge into navigable waters. The certification shall originate from the State or appropriate interstate water pollution control agency in/where the discharge originates or will originate. Any such discharge will comply with the applicable provisions of Sections 301, 302, 303, 306, and 307 of the CWA.

# Solid Waste Agency of Northern Cook County (SWANCC) v. United States

Solid Waste Agency of Northern Cook County (SWANCC) v. U.S. Army Corps of Engineers, 531 U.S. 159 (2001), was a United States Supreme Court decision that determined that the USACE's use of the "migratory bird rule" to decide the extent of its authority over discharges into "isolated waters" (including isolated wetlands), exceeded the authority that was granted by Section 404 of the Clean Water Act. In 2001 and again in 2003, the agencies developed guidance to address the definition of "waters of the United States" under the Clean Water Act following the SWANCC Supreme Court decision. Isolated, intrastate waters that are capable of supporting navigation by watercraft remain subject to CWA jurisdiction after SWANCC if they are traditional navigable waters. However, SWANCC eliminates CWA jurisdiction over isolated waters that are intrastate and non-navigable.

#### Rapanos v. United States & Carabell v. United States

The USACE and the EPA have issued a set of guidance documents detailing the process for determining CWA jurisdiction over waters of the U.S. following the 2008 Rapanos decision. The EPA and USACE issued a summary memorandum of the guidance for implementing the Supreme

Court's decision in Rapanos that addresses the jurisdiction over waters of the U.S. under the CWA. The complete set of guidance documents, summarized as key points below, were used to collect relevant data for evaluation by the EPA and the USACE to determine CWA jurisdiction over the project and to complete the "significant nexus test" as detailed in the guidelines.

#### Summary of Key Points

The agencies will assert jurisdiction over the following waters:

- Traditional navigable waters
- Wetlands adjacent to traditional navigable waters
- Non-navigable tributaries of traditional navigable waters that are relatively permanent where
  the tributaries typically flow year-round or have continuous flow at least seasonally (e.g.,
  typically three months)
- Wetlands that directly abut such tributaries

The agencies will decide jurisdiction over the following waters based on a fact-specific analysis to determine whether they have a significant nexus with a traditional navigable water:

- Non-navigable tributaries that are not relatively permanent
- Wetlands adjacent to non-navigable tributaries that are not relatively permanent
- Wetlands adjacent to but that do not directly abut a relatively permanent non-navigable Tributary

The agencies generally will not assert jurisdiction over the following features:

- Swales or erosional features (e.g., gullies, small washes characterized by low volume, infrequent, or short duration flow)
- Ditches (including roadside ditches) excavated wholly in and draining only uplands and that do not carry a relatively permanent flow of water

The agencies will apply the significant nexus standard as follows:

- A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by all wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical and biological integrity of downstream traditional navigable waters
- Significant nexus includes consideration of hydrologic and ecologic factors

The significant nexus test includes consideration of hydrologic and ecologic factors. For certain circumstances, the significant nexus test would take into account physical indicators of flow (evidence of an ordinary high water mark [OHWM]), if a hydrologic connection to a Traditionally Navigable Water (TNW) exists, and if the aquatic functions of the water body have a significant effect (more than speculative or insubstantial) on the chemical, physical, and biological integrity of a TNW. The USACE and EPA will apply the significant nexus standard to

assess the flow characteristics and functions of a potential water of the U.S. to determine if it significantly affects the chemical, physical, and biological integrity of the downstream TNW.

#### 3.2 Waters of the State

Most projects involving water bodies or drainages are regulated by the RWQCB, the principal State agency overseeing water quality of the State at the local/regional level. The survey area is located within the jurisdiction of the Lahontan RWQCB 6v. Where waters of the State overlap with waters of the U.S., pending verification from the USACE, those waters would be regulated under Section 401 of the CWA which is described in the Regulatory Framework in Section 3.1.

In the absence of waters of the U.S., waters may be regulated under the Porter-Cologne Water Quality Control Act if project activities, discharges, or proposed activities or discharges could affect California's surface, coastal, or ground waters. The permit submitted by the applicant and issued by RWQCB is either a Water Quality Certification in the presence of waters of the U.S. or a Waste Discharge Requirement (WDR) in the absence of waters of the U.S.

The State Wetland Definition and Procedures for Discharges of Dredged or Fill Material to Waters of the State (procedures), as prepared by the State Water Resources Control Board, was implemented on May 28, 2020. The procedures include a definition for wetland waters of the state that include 1) all wetland waters of the U.S.; and 2) aquatic resources that meet both the soils and hydrology criteria for wetland waters of the U.S. but lack vegetation.<sup>1</sup>

#### 3.3 Rivers, Streams, and Lakes

Pursuant to Division 2, Chapter 6, Section 1600 et seq. of the FGC, California Department of Fish and Wildlife (CDFW) regulates all diversions, obstructions, or changes to the natural flow or bed, channel or bank of any river, stream, or lake which supports fish or wildlife. A notification of a Lake or Streambed Alteration Agreement must be submitted to CDFW for "any activity that may substantially change the bed, channel, or bank of any river, stream, or lake." In addition, CDFW has authority under FGC over wetland and riparian habitats associated with lakes and streams. The CDFW reviews proposed actions, and if necessary, submits to the applicant a proposal that includes measures to protect affected fish and wildlife resources. The final proposal that is mutually agreed upon by CDFW and the applicant is the Lake or Streambed Alteration Agreement (LSAA).

Less than 5 percent areal coverage at the peak of the growing season.

#### **CHAPTER 4**

## Methodology

#### 4.1 Pre-Field Review

Prior to completing the aquatic resources delineation, ESA conducted a review of available background information pertaining to the survey area. The following resources were reviewed to obtain information on the hydrology, including information on the local geography and topography:

- United States Department of Agriculture Natural Resources Conservation Service (NRCS)
   Web Soil Survey (NRCS 2022b);
- USGS 7.5' topographic quadrangle maps: Bishop, Poleta Canyon, Laws, and Fish Slough (USGS 2022a);
- Current aerial imagery (Google, Inc.2022);
- Precipitation data from the Applied Climate Information System (NOAA 2022);
- The National Wetlands Inventory (NWI) (USFWS 2022); and
- National Hydrography Dataset (NHD), (USGS 2022b).

#### 4.1.1 National Wetlands Inventory

Aerial maps (Google, Inc. 2022) and the NWI were used to conduct a preliminary assessment of the limits of aquatic features in the survey area. NWI mapped freshwater emergent wetlands, freshwater forested/shrub wetlands, freshwater pond and riverine within the survey area (**Figures 5** and **6**). Field surveys verified the extent of aquatic features.

#### 4.2 Field Survey Methods

A delineation of aquatic resources within the survey area was conducted on November 1, 2022, by ESA Biologists Anna Schwyter and Natalie Lamas. Weather conditions during the delineation were conducive to conducting field surveys and were sunny and clear. Temperatures ranged from 38 degrees to 52 degrees Fahrenheit and winds ranged from 0-32 mph. Field data were collected using an EOS Arrow 100 Global Navigation Satellite System receiver, which provides Satellite-based Augmentation System corrections processing in the field and can provide submeter real-time horizontal accuracy.

The delineation was conducted by walking throughout the survey area to selected areas where aquatic resources were identified during the literature review. Features that were identified as aquatic resources included, but were not limited to, drainages that had an OHWM and defined channels with bed and bank, as well as potential wetlands evidenced by visible hydrologic

indicators and/or hydrophytic vegetation. Additional data, such as landforms, vegetation, hydrology, and soils (USACE 2008b) were noted where these characteristics were pertinent to identification of features.

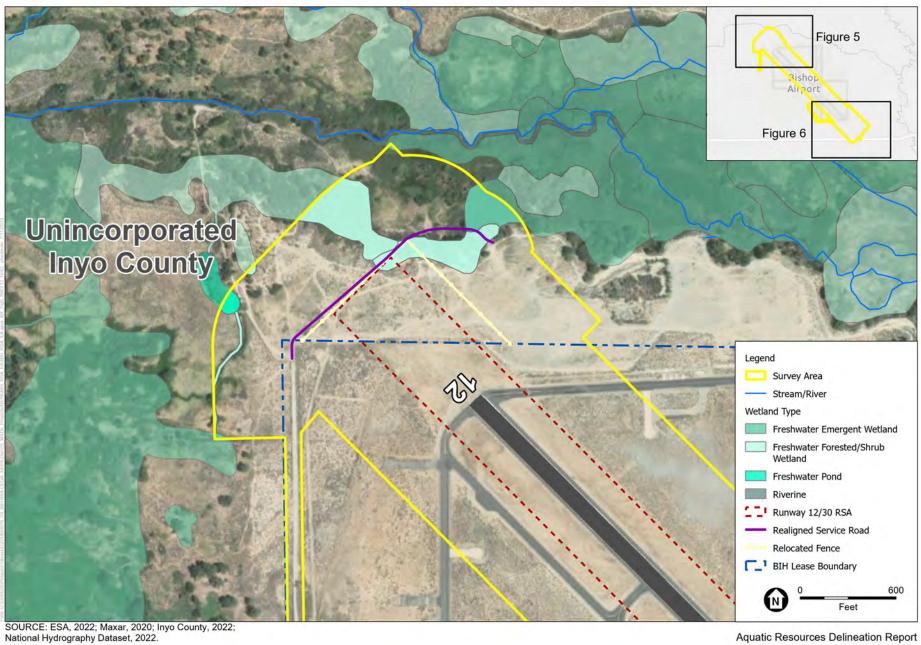
Aquatic resources were identified and delineated following current federal and state methodology and guidelines, including waters of the U.S., waters of the State, and FGC Section 1600 resources. Field data forms are included in **Appendix C-3**.

#### 4.2.1 Waters of the U.S.

#### Wetlands

The delineation used the "Routine Determination Method" as described in the 1987 Corps of Engineers Wetland Delineation Manual (Environmental Laboratory 1987), hereafter called the "1987 Manual." The 1987 Manual was used in conjunction with the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0) (USACE 2008), hereafter called the "Arid West Supplement." For areas where the 1987 Manual and the Arid West Supplement differ, the Arid West Supplement was followed. Wetlands and waters were classified using commonly accepted habitat types; however, the Cowardin classification (Cowardin et al. 1979) of each feature type is noted in the discussion in Chapter 5.

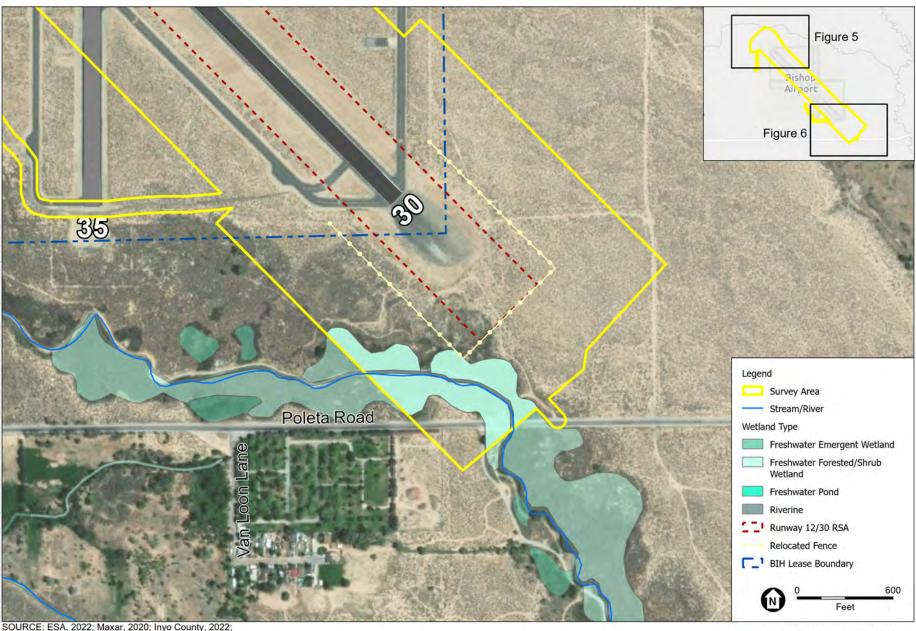
To determine the extent of potential jurisdictional wetlands on a project site, the 1987 Manual and Arid West Supplement were used as a guide for identifying wetland characteristics. Three positive wetland parameters must normally be present for an area to be considered a wetland: 1) a dominance of wetland vegetation, 2) presence of hydric soils, and 3) presence of wetland hydrology. Presence or absence of positive indicators for wetland vegetation, soils and hydrology was assessed per the 1987 Manual and Arid West Supplement guidelines. Data points were taken within suspected wetlands and a paired point was taken (where applicable) in nearby upland areas. Data points were recorded on Arid West Region wetland determination data forms, which are provided in Appendix C-3.


At each data point, a visual assessment of the dominant plant species within the vegetation community was made. Dominant species were assessed using the "Dominance Test" method per the Arid West Supplement. Plants were identified to species using the *The Jepson Manual: Vascular Plants of California, Second Edition* (Baldwin et al. 2012). The *Arid West 2016 Regional Wetland Plant List* (Lichvar et al. 2016) was used to determine the wetland indicator status of all plants.

Hydric soils were identified using soil indicators presented in the *Regional Supplement to the* Arid West Supplement. Soils at each data point were characterized by color, texture, organic matter accumulation, and the presence or absence of hydric soil indicators. The coloration of the soil samples, matrix, and mottles is assessed using the *Munsell Soil Color Charts* (Munsell 2015).

Presence of wetland hydrology was determined at each data point by presence of one or more of the primary and/or secondary indicators, per guidance of the Arid West Supplement.

#### Non-Wetland (Other) Waters of the U.S.


Federal jurisdiction over non-wetland waters of the U.S. extends to the OHWM, defined in 33 CFR 328.3 as the line on the shore established by fluctuations of water and indicated by physical characteristics such as a clear, natural line impressed on the bank, shelving, changes in the character of the soil, destruction of terrestrial vegetation, or the presence of litter and debris. In the Arid West region of the United States, waters are variable and include ephemeral, intermittent and perennial channel forms. Delineation methods were completed in accordance with A Field Guide to the Identification of the Ordinary High Water Mark in the Arid West Region of the Western United States (USACE, 2008a).



Aquatic Resources Delineation Report

Figure 5 Hydrology Runway 12 End





SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022; National Hydrography Dataset, 2022.

Aquatic Resources Delineation Report

Figure 6 Hydrology Runway 30 End



4. Methodology

This page intentionally left blank

# **CHAPTER 5**

# Results

# 5.1 Aquatic Resources

The delineation identified aquatic resources in the survey area consisting of freshwater emergent wetlands freshwater forested/scrub wetlands, an ephemeral drainage, and a perennial canal. Aquatic resources were classified using the *Classification of Wetlands and Deepwater Habitats of the United* States (the "Cowardin Classification") (FGDC 2013). The details of the aquatic resources are provided below.

**Table 5-1** summarizes the aquatic features by type and these types of resources are discussed in detail in the following sections. All aquatic resources are shown in **Figure 7-1** through **Figure 7-5**. **Figures 7-6** and **7-7** depict the delineated wetlands and the Proposed Project. Data forms from the field delineation are included as Appendix C-3 of this Technical Report and representative site photographs are included in **Appendix C-5** of this Report. The full table of individual features is presented in **Appendix C-4** of this Report.

TABLE 5-1
AQUATIC RESOURCES WITHIN THE SURVEY AREA

| Aquatic Feature                                                          | Cowardin Classification                 | Linear<br>Feet | Area (acres) |  |  |
|--------------------------------------------------------------------------|-----------------------------------------|----------------|--------------|--|--|
| Wetlands                                                                 |                                         |                |              |  |  |
| Freshwater Emergent<br>Wetland (FEW-1)                                   | Emergent, Palustrine (PEM)              | N/A            | 1.27         |  |  |
| Freshwater Forest/Shrub<br>Wetlands (FFSW-1, FFSW-<br>2, FFSW-3, FFSW-4) | Scrub-Shrub, Palustrine (PSS)           | N/A            | 7.56         |  |  |
| Riverine                                                                 |                                         |                |              |  |  |
| Riverine (ED-1)                                                          | Intermittent, Riverine (R4)             | 650            | 0.14         |  |  |
| Riverine (Rawson Canal)                                                  | Intermittent, Riverine Streambed (R4SB) | 950            | 0.21         |  |  |
|                                                                          | Total Aquatic Features:                 | 1600           | 9.19         |  |  |

SOURCE: Environmental Science Associates, 2022

# 5.1.1 Wetlands

# **Freshwater Emergent Wetlands**

Freshwater emergent wetlands are characterized by erect, rooted, herbaceous hydrophytes and are classified as Palustrine Emergent Wetland (PEM) according to the *Classification of Wetlands and Deepwater Habitats of the United States* (FGDC 2013).

The emergent vegetation is present for most of the growing season in most years and these wetlands are dominated by perennial plants. Wildlife frequently use these areas for nesting and feeding, particularly during migration. Surface water is present for extended periods especially early in the growing season but is absent by the end of the growing season in most years. The water table after flooding ceases is variable, extending from saturated to the surface to a water table well below the ground surface.

Data point 7 represents conditions in the emergent wetland and point 6 documents the conditions in the adjacent uplands. Hydric soil indicator includes Redox Dark Surface (F6). Wetland hydrology indicators include Drift Deposits (B3) and Inundation Visible on Aerial Imagery (B7).

## Freshwater Forest/Scrub Wetlands

Freshwater forest/scrub wetlands include wetland areas dominated by woody vegetation less than 20 feet tall and are classified as Palustrine Scrub-Shrub (PSS) according to the *Classification of Wetlands and Deepwater Habitats of the United States* (FGDC 2013). Vegetation cover includes true shrubs, young trees (saplings), and trees or shrubs that are small or stunted because of environmental conditions. Surface water is present for extended periods especially early in the growing season but is absent by the end of the growing season in most years. Once surface water recedes the water table is variable, extending from saturated to the surface to a water table well below the ground surface. PSS wetlands supply an abundance of food and cover resources for mammals and birds and provide necessary breeding habitat for many migratory bird species.

Sample points 5 and 9 represent conditions in the freshwater forest/scrub wetlands and points 6 and 10 document the conditions in the adjacent uplands. Hydric soil indicators include Redox Dark Surface (F6) and Loamy Mucky Mineral (F1). Wetland hydrology indicators include Inundation Visible on Aerial Imagery (B7) and Thin Muck Surface (C7).

# 5.1.2 Other Waters

# **Ephemeral Drainage**

Sample point 3 represents conditions in the ephemeral drainage and points 2 and 4 document the conditions in the adjacent uplands. Hydric soil indicators include Redox Dark Surface (F6). Wetland hydrology indicators include Drift Deposits (B3) and Inundation Visible on Aerial Imagery (B7). Aerial imagery shows this drainage containing water for some period of some years, and hydrology may be driven by precipitation events.

# Riverine

Rawson Canal represents conditions in the riverine classification. Surface water is present in the channel for extended periods especially early in the growing season. The canal is an open conduit which was artificially created and continuously contains flowing water and forms a manmade secondary connection between Bishop Creek and the Owens River.

# 5.2 Regulatory Analysis

# 5.2.1 Waters of the U.S.

After the aquatic resources were delineated, all features were evaluated to determine whether they may be regulated under the CWA, using the parameters set forth under the current regulations defining waters of the United States. **Table 5-2** summarizes the results of this assessment for all aquatic resources in the survey area. The evaluation below uses the guidance provided by USACE and EPA (2008) for application of regulations and case law defining waters of the United States for aquatic resources.

TABLE 5-2
POTENTIAL WATERS OF THE U.S.

| Aquatic Resource                          | Waters of the<br>United States (ac) | Excluded (ac) | Rationale                                                                                                          |
|-------------------------------------------|-------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|
| Wetlands                                  |                                     |               |                                                                                                                    |
| Freshwater Emergent<br>Wetland FEW-1      | 1.27                                | -             | Directly abuts RPW                                                                                                 |
| Freshwater Forest/Shrub<br>Wetland FFSW-1 | 2.79                                | -             | Directly abuts RPW                                                                                                 |
| Freshwater Forest/Shrub<br>Wetland FFSW-2 | 0.16                                | -             | Directly abuts RPW                                                                                                 |
| Freshwater Forest/Shrub<br>Wetland FFSW-3 | 1.8                                 | -             | Directly abuts RPW                                                                                                 |
| Freshwater Forest/Shrub<br>Wetland FFSW-4 | -                                   | 2.82          | Adjacent but not directly abutting RPW. No surface hydrologic connection to other wetlands or waters.              |
| Other Waters                              |                                     |               |                                                                                                                    |
| Riverine (Rawson Canal)                   | 0.21                                | -             | RPW                                                                                                                |
| ED-1                                      | -                                   | 0.14          | Isolated non-RPW that drains to a small pond with no downstream connection to an RPW, adjacent wetlands, or a TNW. |
| Total Aquatic Features:                   | 6.23                                | 2.96          |                                                                                                                    |

NOTES: ac=acres; RPW=Relatively Permanent Waters

SOURCE: Data compiled by Environmental Science Associates in 2020 and 2022

# **Relatively Permanent Waters**

Rawson Canal is an intermittent streambed that is connected upstream to North Fork Bishop Creek and eventually drains (in part) to the Owens River and Owens Lake, a TNW. Rawson

Canal is a RPW, typically having year-round flow. Therefore, Rawson Canal is a non-navigable tributary to a TNW and is therefore a water of the United States.

# **Wetlands Directly Abutting Relatively Permanent Waters**

FFSW-3 directly abuts Rawson Canal because it is within the operational elevation of the canal, and during wet years reaches an elevation where it may drain into the canal thereby establishing a hydrologic connection to the canal. Therefore, FFSW-3 is a wetland directly abutting a RPW and is considered a water of the U.S.

FEW-1, FFSW-1, and FFSW-2 are adjacent to North Fork Bishop Creek. In wet years and during snowmelt and precipitation events they likely exchange surface water with North Fork Bishop Creek. North Fork Bishop Creek is a tributary to the Owens River, a non-navigable tributary to Owens Lake which is a TNW. Therefore, FEW-1, FFSW-1, and FFSW-2 are considered wetland waters of the U.S.

# Wetlands Adjacent to but Not Directly Abutting Relatively Permanent Waters

FFSW-4 is adjacent to Rawson Canal but does not directly abut the creek because it is on the opposite side of a road and does not exchange surface water with the canal. Water leaves FFSW-4 through either percolation or evaporation. Based on proximity and soil hydraulic conductivity, FFSW-4 likely shares a groundwater connection with Rawson Canal but lacks a surface hydrologic connection with Rawson Canal and other nearby aquatic resources. Therefore, FFSW-4 does not contribute to the chemical, physical, and biological integrity of the downstream TNW and is not likely to be considered a water of the U.S.

# Isolated Non-Relatively Permanent Water

ED-1 is an isolated non-RPW that drains to a small pond with no downstream connection to a RPW, adjacent wetlands, or a TNW. Therefore, ED-1 is not likely to be considered a water of the U.S.

# 5.2.2 Waters of the State

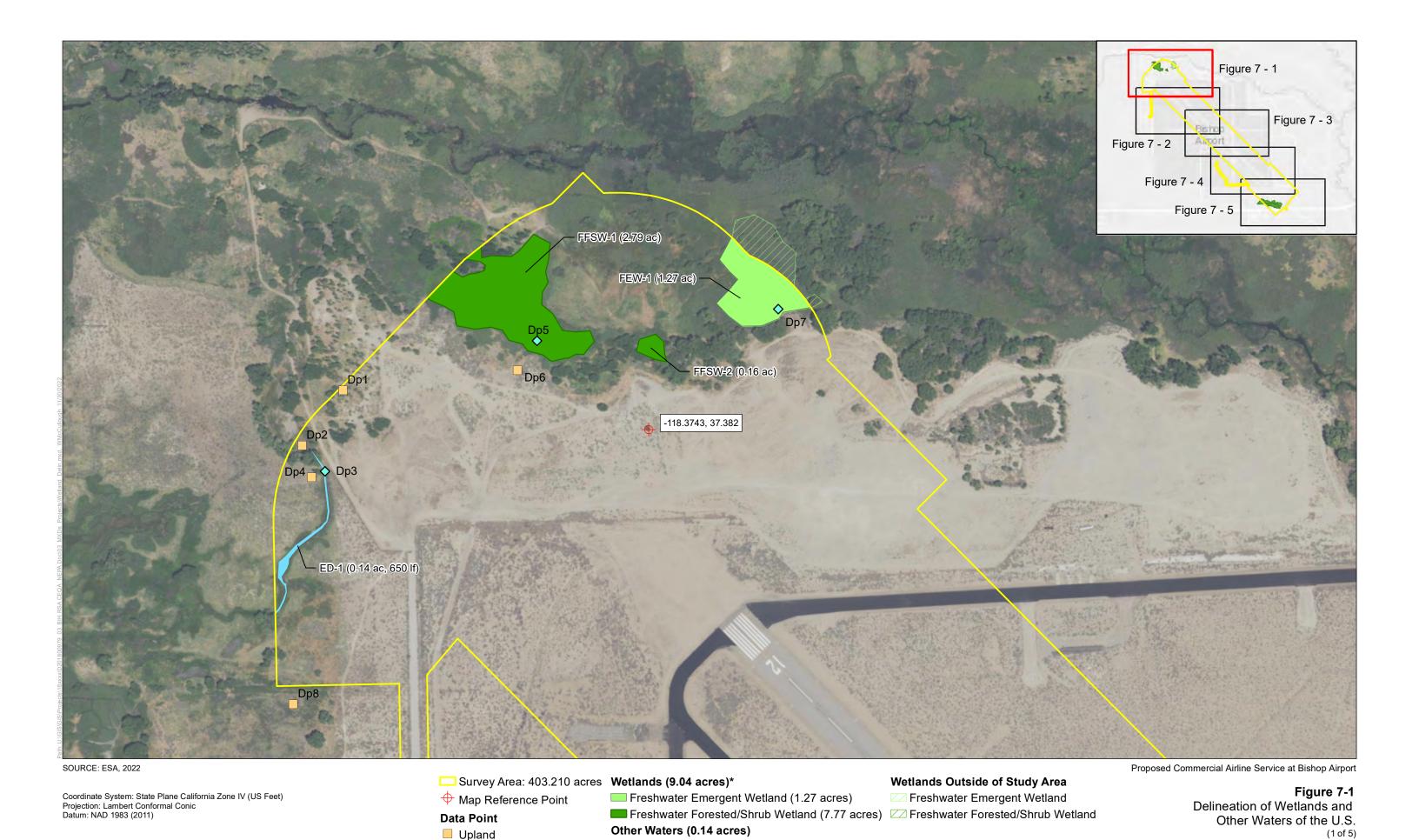
All the waters and wetlands in the survey area likely qualify as waters of the state. Waters of the state include all features that qualify as waters of the United States. In addition, the definition of waters of the state includes "natural wetlands" and "wetlands created by modification of a surface water of the state." All wetlands (FEW-1, FFSW-1, FFSW-2, FFSW-3, FFSW-4) and surface waters (ED-1 and Rawson Canal) in the survey area likely qualify as natural aquatic features because there are no artificial hydrologic inputs.

# 5.2.3 Rivers, Streams, and Lakes

Features potentially subject to regulation under Fish and Game Code Section 1602 are shown in **Table 5-3** and Figures 7-1 through 7-5. Potential CFGC Section 1602 regulated resources include all waters of the state described above with the exception of Freshwater Emergent Wetlands

which do not have a defined bed or bank and do not support riparian habitat. The total acreages potentially subject to CDFW jurisdiction for the survey area are provided in Table 5-3.

TABLE 5-3
FEATURES POTENTIALLY SUBJECT TO SECTION 1600 ET SEQ. OF THE FISH AND GAME CODE


| Aquatic Feature                              | Cowardin<br>Type <sup>1</sup>                   | Vegetated<br>Streambed/<br>Pond/Lake<br>(Acre) | Unvegetated<br>Streambed/<br>Pond/Lake<br>(Acre) | Length<br>(feet) | Average<br>Width<br>(feet) | Vegetation/<br>Land Cover<br>Type | GPS<br>Coordinates<br>(decimal<br>degrees) |
|----------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------|----------------------------|-----------------------------------|--------------------------------------------|
| Freshwater<br>Forest/Shrub<br>Wetland FFSW-1 | Scrub-<br>Shrub,<br>Palustrine                  | 2.7866                                         | -                                                | NA               | NA                         | Sandbar<br>willow thicket         | 37.38300000, -<br>118.37579900             |
| Freshwater<br>Forest/Shrub<br>Wetland FFSW-2 | Scrub-<br>Shrub,<br>Palustrine                  | 0.1581                                         | -                                                | NA               | NA                         | Sandbar<br>willow thicket         | 37.38323000, -<br>118.37449900             |
| Freshwater<br>Forest/Shrub<br>Wetland FFSW-3 | Scrub-<br>Shrub,<br>Palustrine                  | 1.7970                                         | -                                                | NA               | NA                         | Sandbar<br>willow thicket         | 37.36231300, -<br>118.35446700             |
| Freshwater<br>Forest/Shrub<br>Wetland FFSW-4 | Scrub-<br>Shrub,<br>Palustrine                  | 2.8211                                         | -                                                | NA               | NA                         | Sandbar<br>willow thicket         | 37.36279900, -<br>118.35626900             |
| ED-1                                         | Intermittent,<br>Riverine                       | -                                              | 0.14                                             | 650              | 5                          | Sandbar<br>willow thicket         | 37.381544, -<br>118.378334                 |
| Riverine (Rawson<br>Canal)                   | Riverine<br>intermittent<br>streambed<br>(R4SB) | -                                              | 0.21                                             | 950              | 8                          | Open water                        | 37.36248300, -<br>118.35452000             |
| Totals:                                      |                                                 | 7.5628                                         | 0.35                                             | 1,600            |                            |                                   |                                            |

SOURCE: Environmental Science Associates, 2022.

# 5.3 Conclusions

In total, 6.22 acres of aquatic resources are present in the survey area. Wetlands are waters of the United States comprising 6.01 acres. The isolated freshwater forested shrub wetland (FFSW-4) and ED-1 do not meet the significant nexus criteria to qualify as waters of the US; these make up 2.96 acres.

This report documents the delineation of the boundaries of aquatic resources in the survey area, based on the best professional judgment of ESA investigators. All conclusions presented should be considered preliminary and subject to change pending official review and jurisdictional determination in writing by USACE and/or the State of California.




Ephermeral Drainage (0.14 acres)

Delineated by: Anna Schwyter Mapping by: Wes McCullough Created on: November 29, 2022

\*NOTE: Area (acreage) of Wetlands and Other Waters are presented only for the portionlocated within the Survey Area boundary.

Wetland



\*NOTE: Area (acreage) of Wetlands and Other Waters are presented only for the portionlocated within the Survey Area boundary.

→ Map Reference Point **Data Point** 

Upland Wetland

Survey Area: 403.210 acres Wetlands (9.04 acres)\*

Ephermeral Drainage (0.14 acres)

Freshwater Emergent Wetland (1.27 acres) Freshwater Forested/Shrub Wetland (7.77 acres) Freshwater Forested/Shrub Wetland Other Waters (0.14 acres)

# **Wetlands Outside of Study Area**

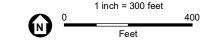
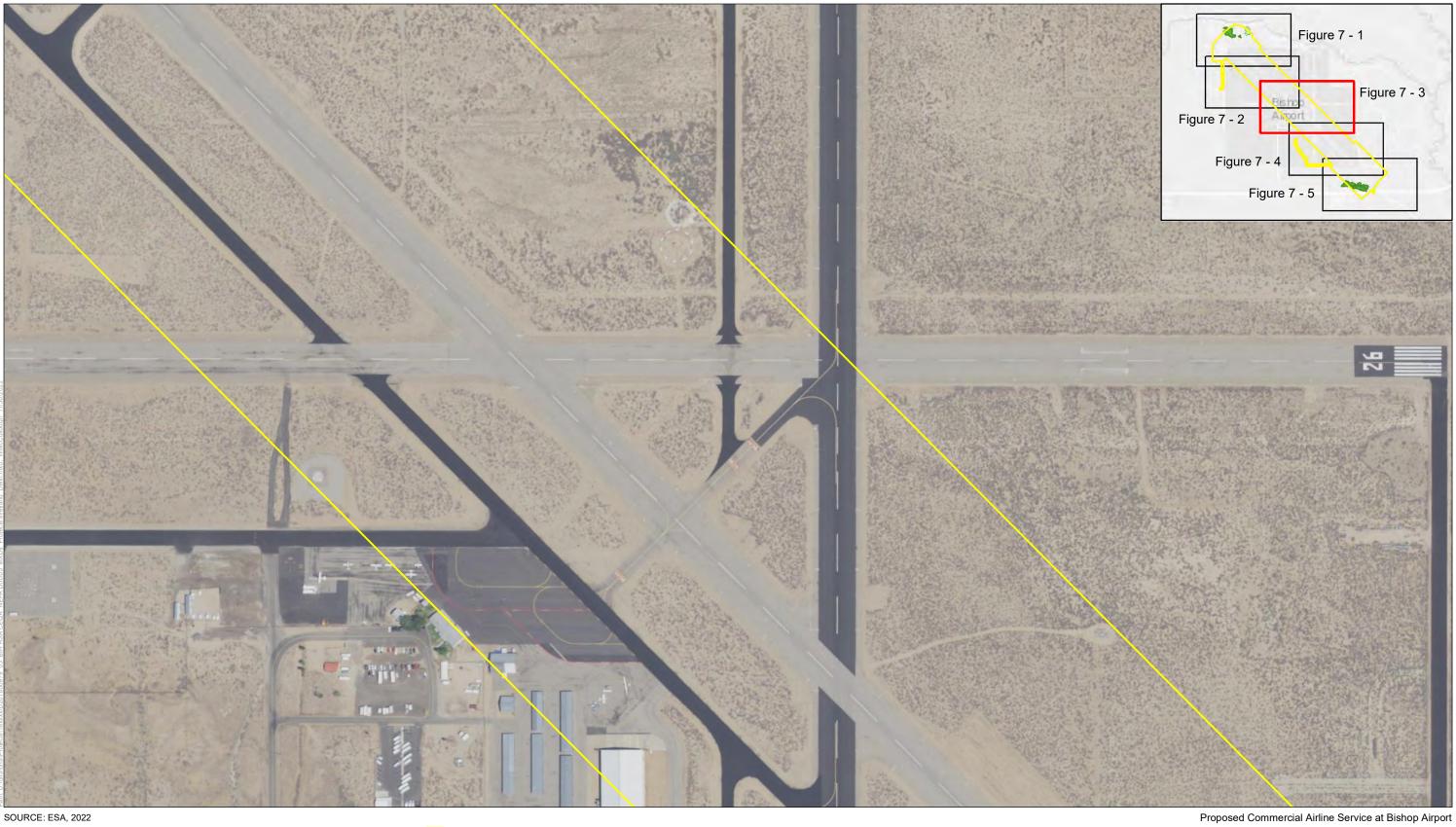




Figure 7-2 Delineation of Wetlands and Other Waters of the U.S. (2 of 5)



Upland Wetland

**Data Point** 

→ Map Reference Point

Survey Area: 403.210 acres Wetlands (9.04 acres)\*

Freshwater Emergent Wetland (1.27 acres)

Freshwater Forested/Shrub Wetland (7.77 acres) Freshwater Forested/Shrub Wetland Other Waters (0.14 acres)

Ephermeral Drainage (0.14 acres)

# **Wetlands Outside of Study Area**

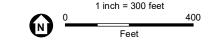



Figure 7-3 Delineation of Wetlands and Other Waters of the U.S. (3 of 5)



**Data Point** 

Upland

Wetland

Survey Area: 403.210 acres Wetlands (9.04 acres)\*

→ Map Reference Point Freshwater Emergent Wetland (1.27 acres) Freshwater Forested/Shrub Wetland (7.77 acres) Freshwater Forested/Shrub Wetland

Other Waters (0.14 acres) Ephermeral Drainage (0.14 acres)

# **Wetlands Outside of Study Area**

Figure 7-4 Delineation of Wetlands and Other Waters of the U.S. (4 of 5)



→ Map Reference Point

**Data Point** Upland

Wetland

Survey Area: 403.210 acres Wetlands (9.04 acres)\*

Freshwater Emergent Wetland (1.27 acres)

Other Waters (0.14 acres)

Ephermeral Drainage (0.14 acres)

# **Wetlands Outside of Study Area**

Freshwater Forested/Shrub Wetland (7.77 acres) Freshwater Forested/Shrub Wetland

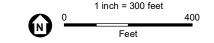
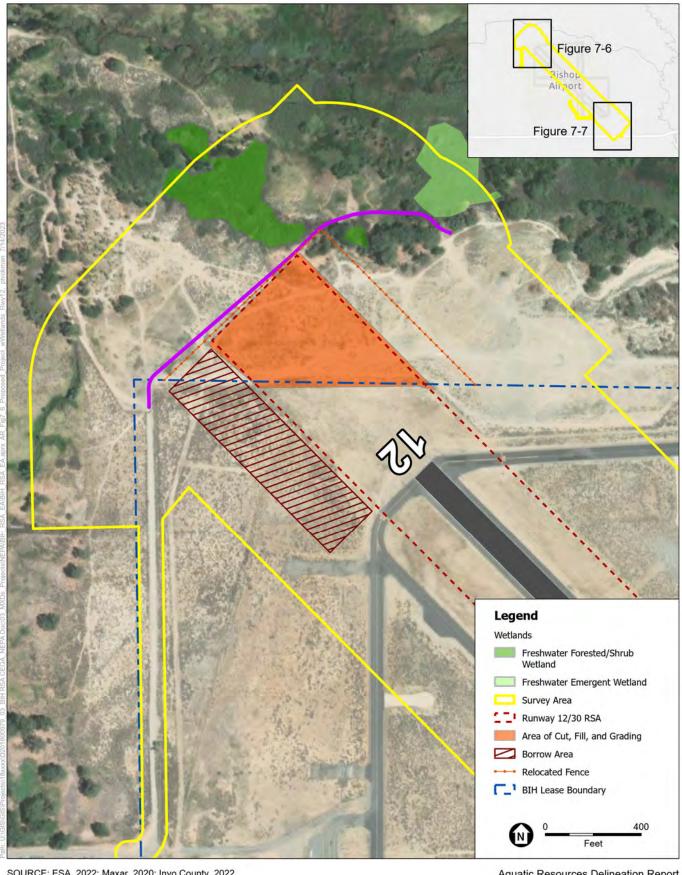
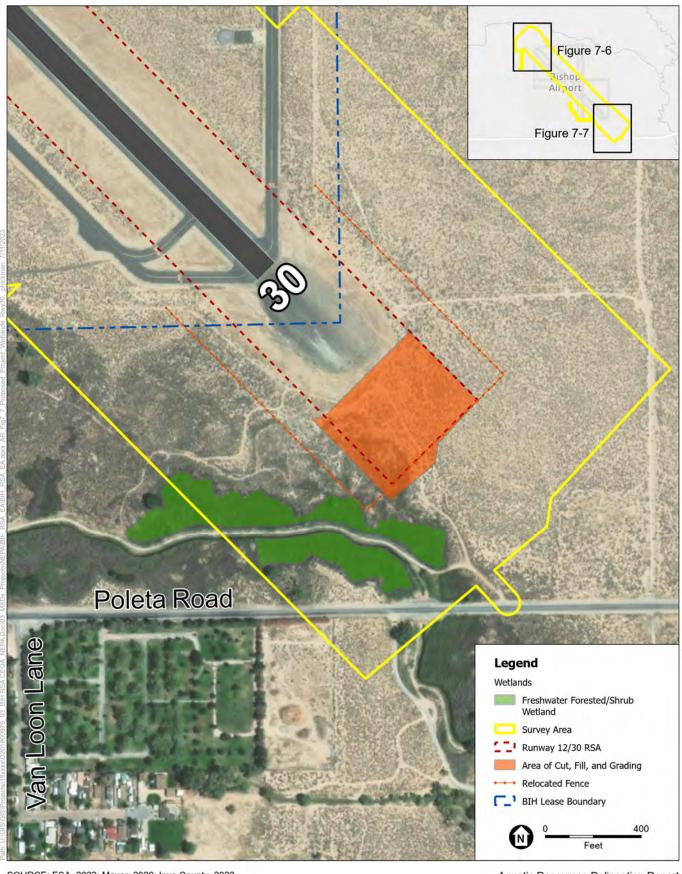




Figure 7-5 Delineation of Wetlands and Other Waters of the U.S. (5 of 5)




SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Aquatic Resources Delineation Report

Figure 7-6 Delineated Wetlands and Proposed Project Runway 12





SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Aquatic Resources Delineation Report

Figure 7-7
Delineated Wetlands and Proposed Project
Runway 30

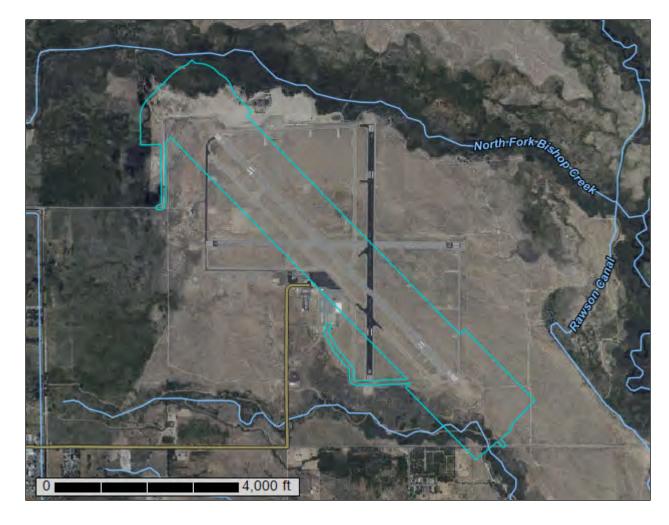


# **CHAPTER 6**

# References Cited

- Baldwin, B.G., D. Goldman, D.J. Keil, R. Paterson, T.J. Rosatti, and D. Wilken (eds.). 2012. Jepson Manual: Vascular Plants of California; Second Edition. University of California Press.
- California Native Plant Society (CNPS). 2022. A Manual of California Vegetation, Online Edition. Available: http://www.cnps.org/cnps/vegetation/ Accessed November, 2022. California Native Plant Society, Sacramento, CA.
- Cowardin, L.M., V. Carter, F.C. Golet, E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C.
- Environmental Laboratory, Department of the Army. 1987. Corps of Engineers Wetland Delineation Manual (Technical Report Y-87-1). U.S. Army Corps of Engineers. Waterways Experimental Station. Vicksburg, Mississippi.
- Federal Geographic Data Committee (FGDC). 2013. Classification of Wetlands and Deepwater Habitats of the United States. FGDC-STD-004-2013. Second Edition. Washington, DC: Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service.
- Google, Inc. 2022. Google Earth (Version 7.3.2.5776) [Software]. Available: www.google.com/earth/. Accessed November 2022.
- Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. Arid West 2016 Regional Wetland Plant List. Phytoneuron 2016-30: 1-17. Published April 28, 2016.
- Munsell Color. 2015. *Munsell Soil Color Charts*, revised edition. New Windsor, NY: Macbeth Division of Kollmorgen Instruments Corporation.
- National Oceanic and Atmospheric Association (NOAA). 2020. AgACIS for Inyo County. Available: http://agacis.rcc-acis.org/ Accessed November 2022.
- Natural Resources Conservation Service (NRCS). 2022a. Soil Data Access Hydric Soils List. Available: www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcseprd1316620.html. Accessed November 20202.
- ——. 2022b. Web Soil Survey. Available: http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed November, 2022.
- State Water Resources Control Board (SWRCB). 2020. State Wetland Definition and Procedures for Discharges of Dredged or Fill Material to Waters of the State. Adopted April 2, 2019.

Sawyer, J.O., T. Keeler-Wolf, and J.M. Evens. 2009. A Manual of California Vegetation. 2nd Edition. California Native Plant Society. U. S. Army Corps of Engineers (USACE). 2008a. A Field Guide to the Identification of the Ordinary High Water Mark (OHWM) in the Arid West Region of the Western United States. August 2008. — 2008b. Arid West Supplement to the 1987 Wetlands Delineation Manual. 2016. Updated Map and Drawing Standards for the South Pacific Division Regulatory Program. -. 2017. Sacramento District Minimum Standards for Acceptance of Aquatic Resources Delineation Reports. —. 2019. Sacramento District Aquatic Resource Delineation Report Submittal Workshop. ——. 2020. National Wetland Plant List, version 3.4. —. 2021. Antecedent Precipitation Tool. October 2022. U.S. Fish and Wildlife Service (USFWS). 2022. National Wetland Inventory. https://www.fws.gov/wetlands/data/Mapper.html. Accessed November 2022. United States Geological Survey (USGS). 2022a. USGS Historical Topographic Map Explorer. Available: http://historicalmaps.arcgis.com/usgs/. Accessed November 2022. -. 2022b. National Hydrography Dataset (NHD). Available: https://www.usgs.gov/national-hydrography/national-hydrography-dataset. Accessed


November 2022.

# C-1 Soils Report



**NRCS** 

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource
Report for
Benton-Owens Valley Area
Parts of Inyo and Mono
Counties, California
BIH\_RSA\_Proposed\_Action\_Are
a



# **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# **Contents**

| Preface                                                              | 2  |
|----------------------------------------------------------------------|----|
| How Soil Surveys Are Made                                            |    |
| Soil Map                                                             |    |
| Soil Map                                                             |    |
| Legend                                                               | 10 |
| Map Unit Legend                                                      | 11 |
| Map Unit Descriptions                                                | 11 |
| Benton-Owens Valley Area Parts of Inyo and Mono Counties, California | 13 |
| 189—Dehy-Dehy calcareous complex, 0 to 2 percent slopes              | 13 |
| 221—Inyo sand, 0 to 9 percent slopes                                 | 14 |
| 224—Inyo-Poleta complex, 0 to 2 percent slopes                       | 15 |
| 281—Pits-Dumps complex, 0 to 50 percent slopes                       | 17 |
| 312—Shabbell-Shondow-Xerofluvents association, 0 to 2 percent        |    |
| slopes                                                               | 18 |
| 328—Torrifluvents-Fluvaquentic Endoaquolls complex, 0 to 2 percent   |    |
| slopes                                                               | 20 |
| 370—Xerofluvents, 0 to 5 percent slopes                              | 22 |
| References                                                           | 24 |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

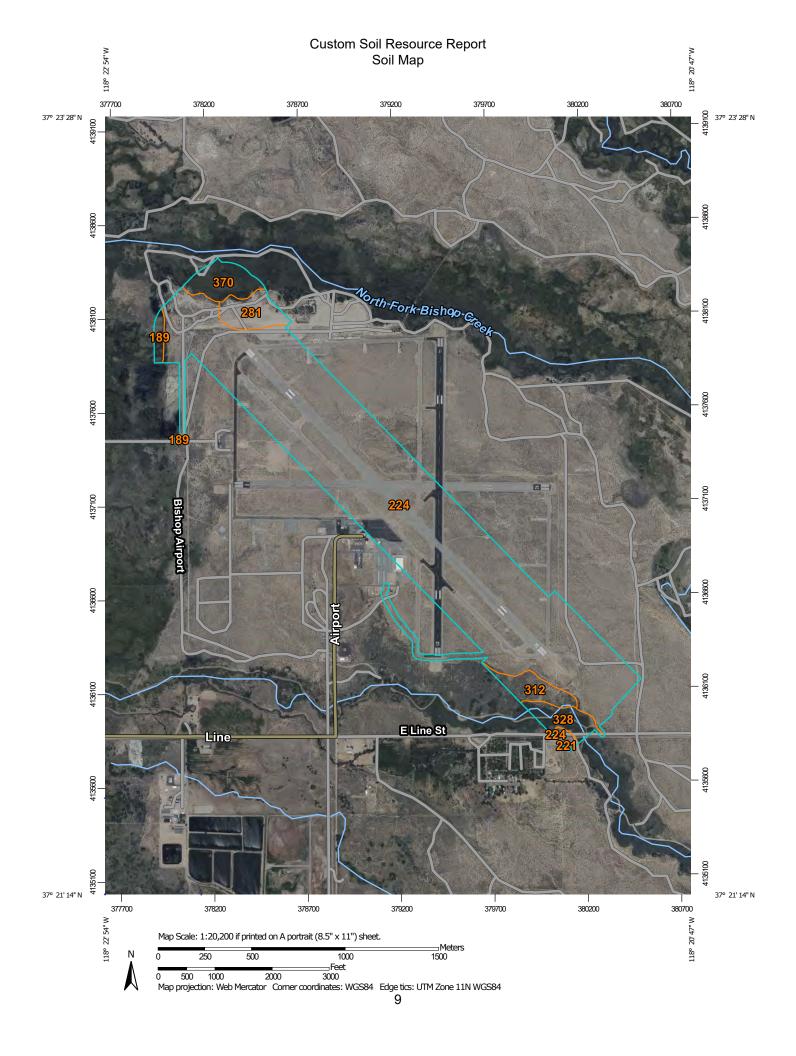
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

#### **Special Point Features**

ဖ

Blowout

Borrow Pit

Clay Spot

**Closed Depression** 

Gravel Pit

**Gravelly Spot** 

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Sodic Spot

Severely Eroded Spot

Sinkhole Slide or Slip

å

Spoil Area Stony Spot

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

#### **Water Features**

Streams and Canals

#### Transportation

---

Rails

Interstate Highways

**US Routes** 

Major Roads

 $\sim$ 

Local Roads

#### Background

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Benton-Owens Valley Area Parts of Inyo and Mono Counties, California

Survey Area Data: Version 20, Sep 1, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 12, 2019—Jul 15, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# Map Unit Legend

| Map Unit Symbol             | Map Unit Name                                                           | Acres in AOI | Percent of AOI |
|-----------------------------|-------------------------------------------------------------------------|--------------|----------------|
| 189                         | Dehy-Dehy calcareous<br>complex, 0 to 2 percent<br>slopes               | 3.8          | 0.9%           |
| 221                         | Inyo sand, 0 to 9 percent slopes                                        | 2.0          | 0.5%           |
| 224                         | Inyo-Poleta complex, 0 to 2 percent slopes                              | 346.2        | 85.9%          |
| 281                         | Pits-Dumps complex, 0 to 50 percent slopes                              | 13.6         | 3.4%           |
| 312                         | Shabbell-Shondow-<br>Xerofluvents association, 0 to<br>2 percent slopes | 11.4         | 2.8%           |
| 328                         | Torrifluvents-Fluvaquentic Endoaquolls complex, 0 to 2 percent slopes   | 11.3         | 2.8%           |
| 370                         | Xerofluvents, 0 to 5 percent slopes                                     | 14.9         | 3.7%           |
| Totals for Area of Interest |                                                                         | 403.2        | 100.0%         |

# **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a

given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

# Benton-Owens Valley Area Parts of Inyo and Mono Counties, California

# 189—Dehy-Dehy calcareous complex, 0 to 2 percent slopes

## **Map Unit Setting**

National map unit symbol: jcwl Elevation: 3,600 to 4,700 feet

Mean annual precipitation: 4 to 6 inches

Mean annual air temperature: 57 to 64 degrees F

Frost-free period: 140 to 220 days

Farmland classification: Prime farmland if irrigated and drained

## **Map Unit Composition**

Dehy and similar soils: 45 percent Dehy and similar soils: 40 percent Minor components: 6 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Dehy**

# Setting

Landform: Alluvial fans, stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed sources

# **Typical profile**

H1 - 0 to 18 inches: loamy sand H2 - 18 to 36 inches: sandy loam H3 - 36 to 60 inches: sandy loam

# Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 24 to 36 inches

Frequency of flooding: Rare Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

#### Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: C

Ecological site: R029XG002CA - Saline Meadow

Hydric soil rating: No

# **Description of Dehy**

#### Setting

Landform: Stream terraces, alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed sources

# **Typical profile**

H1 - 0 to 13 inches: fine sandy loam

H2 - 13 to 26 inches: loam

H3 - 26 to 55 inches: fine sandy loam H4 - 55 to 60 inches: loamy sand

## **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 36 to 60 inches

Frequency of flooding: Rare Frequency of ponding: None

Calcium carbonate, maximum content: 10 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 5.0

Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

## Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: B

Ecological site: R029XG002CA - Saline Meadow

Hydric soil rating: No

#### **Minor Components**

#### Unnamed, histosols

Percent of map unit: 3 percent

Landform: Alluvial fans Hydric soil rating: Yes

## Unnamed, wet

Percent of map unit: 3 percent

Landform: Channels Hydric soil rating: Yes

# 221—Inyo sand, 0 to 9 percent slopes

#### Map Unit Setting

National map unit symbol: jcyb

Elevation: 3,800 to 5,000 feet

Mean annual precipitation: 4 to 6 inches

Mean annual air temperature: 57 to 61 degrees F

Frost-free period: 140 to 220 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Inyo and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Inyo**

## Setting

Landform: Dunes on stream terraces

Landform position (two-dimensional): Summit, backslope

Landform position (three-dimensional): Interfluve, side slope, tread

Down-slope shape: Convex, linear

Across-slope shape: Linear

Parent material: Alluvium derived from mixed sources

## Typical profile

H1 - 0 to 5 inches: sand

H2 - 5 to 27 inches: loamy sand

H3 - 27 to 60 inches: stratified coarse sand to gravelly loamy sand

## Properties and qualities

Slope: 0 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00

to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.2 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: R029XG016CA - Sand Dune 5-8" P.Z.

Hydric soil rating: No

# 224—Inyo-Poleta complex, 0 to 2 percent slopes

## **Map Unit Setting**

National map unit symbol: jcym Elevation: 3,680 to 5,000 feet

Mean annual precipitation: 4 to 6 inches

Mean annual air temperature: 57 to 61 degrees F

Frost-free period: 140 to 225 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Inyo and similar soils: 65 percent Poleta and similar soils: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Inyo**

## Setting

Landform: Stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed sources

## **Typical profile**

H1 - 0 to 6 inches: sand

H2 - 6 to 28 inches: loamy sand

H3 - 28 to 60 inches: stratified coarse sand to gravelly loamy sand

## Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00

to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.2 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: R029XG016CA - Sand Dune 5-8" P.Z.

Hydric soil rating: No

#### **Description of Poleta**

#### Settina

Landform: Stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed

#### Typical profile

H1 - 0 to 8 inches: loamy sand H2 - 8 to 20 inches: sandy loam H3 - 20 to 33 inches: indurated

H4 - 33 to 60 inches: stratified gravelly coarse sand to sandy loam

## **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: 20 to 40 inches to duripan

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: R029XG017CA - Loamy 5-8" P.Z.

Hydric soil rating: No

# 281—Pits-Dumps complex, 0 to 50 percent slopes

#### **Map Unit Composition**

Pits: 45 percent Dumps: 40 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Pits**

# Setting

Landform: Valley floors, alluvial fans

Parent material: Alluvium derived from mixed

#### Typical profile

H1 - 0 to 60 inches: variable

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

# **Description of Dumps**

#### Setting

Landform: Valley floors, alluvial fans

Parent material: Alluvium derived from mixed

## Typical profile

H1 - 0 to 60 inches: variable

## Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

# 312—Shabbell-Shondow-Xerofluvents association, 0 to 2 percent slopes

## **Map Unit Setting**

National map unit symbol: jd2q Elevation: 3,650 to 4,200 feet

Mean annual precipitation: 4 to 6 inches

Mean annual air temperature: 57 to 64 degrees F

Frost-free period: 140 to 220 days

Farmland classification: Not prime farmland

## **Map Unit Composition**

Shabbell and similar soils: 40 percent Shondow and similar soils: 30 percent Xerofluvents and similar soils: 15 percent

Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

# **Description of Shabbell**

## Setting

Landform: Stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed

# Typical profile

H1 - 0 to 11 inches: loamy sand H2 - 11 to 31 inches: sandy loam H3 - 31 to 60 inches: fine sandy loam

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

## Interpretive groups

Land capability classification (irrigated): 2s

#### Custom Soil Resource Report

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: A

Ecological site: R029XG002CA - Saline Meadow

Hydric soil rating: No

#### **Description of Shondow**

#### Setting

Landform: Stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed

#### Typical profile

H1 - 0 to 12 inches: loam

H2 - 12 to 24 inches: sandy clay loam H3 - 24 to 60 inches: sandy loam

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 36 inches

Frequency of flooding: Rare Frequency of ponding: None

Calcium carbonate, maximum content: 3 percent

Maximum salinity: Moderately saline to strongly saline (8.0 to 16.0 mmhos/cm)

Sodium adsorption ratio, maximum: 60.0

Available water supply, 0 to 60 inches: Moderate (about 7.9 inches)

#### Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: D

Ecological site: R029XG002CA - Saline Meadow

Hydric soil rating: No

#### **Description of Xerofluvents**

#### Setting

Landform: Stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed

#### Typical profile

H1 - 0 to 4 inches: silt loam H2 - 4 to 19 inches: sand

H3 - 19 to 29 inches: sandy loam H4 - 29 to 34 inches: loam

#### Custom Soil Resource Report

H5 - 34 to 60 inches: stratified sand to loamy sand

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 24 to 60 inches Frequency of flooding: OccasionalNone

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: B

Ecological site: R029XG020CA - Moist Floodplain

Hydric soil rating: No

#### **Minor Components**

#### Unnamed

Percent of map unit: 3 percent Landform: Drainageways Hydric soil rating: Yes

# 328—Torrifluvents-Fluvaquentic Endoaquolls complex, 0 to 2 percent slopes

#### **Map Unit Setting**

National map unit symbol: jd39 Elevation: 3,580 to 4,150 feet

Mean annual precipitation: 5 to 6 inches

Mean annual air temperature: 57 to 61 degrees F

Frost-free period: 150 to 225 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Torrifluvents and similar soils: 60 percent

Fluvaquentic endoaquolls and similar soils: 30 percent

Minor components: 1 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Torrifluvents**

#### Setting

Landform: Stream terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed

#### **Typical profile**

H1 - 0 to 6 inches: loam

H2 - 6 to 13 inches: silty clay loam

H3 - 13 to 31 inches: loam

H4 - 31 to 60 inches: fine sandy loam

#### **Properties and qualities**

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 36 to 60 inches Frequency of flooding: NoneOccasional

Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent

Maximum salinity: Strongly saline (16.0 to 60.0 mmhos/cm)

Sodium adsorption ratio, maximum: 50.0

Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: C

Ecological site: R029XG020CA - Moist Floodplain

Hydric soil rating: No

#### **Description of Fluvaquentic Endoaquolls**

#### Setting

Landform: Depressions

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Parent material: Volcanic ash and/or alluvium derived from mixed sources

#### **Typical profile**

H1 - 0 to 12 inches: loam

H2 - 12 to 36 inches: loamy sand H3 - 36 to 45 inches: loam H4 - 45 to 55 inches: fine sand H5 - 55 to 60 inches: silt loam

#### Properties and qualities

Slope: 0 to 2 percent

#### Custom Soil Resource Report

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 0 to 18 inches Frequency of flooding: NoneFrequent

Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Maximum salinity: Slightly saline to strongly saline (4.0 to 16.0 mmhos/cm)

Sodium adsorption ratio, maximum: 12.0

Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: B/D

Ecological site: R029XG020CA - Moist Floodplain

Hydric soil rating: Yes

#### **Minor Components**

#### Unnamed

Percent of map unit: 1 percent Landform: Drainageways Hydric soil rating: Yes

### 370—Xerofluvents, 0 to 5 percent slopes

#### **Map Unit Setting**

National map unit symbol: jd4n Elevation: 4,000 to 7,500 feet

Mean annual precipitation: 4 to 12 inches

Mean annual air temperature: 45 to 61 degrees F

Frost-free period: 100 to 180 days

Farmland classification: Not prime farmland

#### Map Unit Composition

Xerofluvents and similar soils: 85 percent

Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Xerofluvents**

#### Setting

Landform: Drainageways

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear

#### Custom Soil Resource Report

Across-slope shape: Linear

Parent material: Alluvium derived from mixed

#### **Typical profile**

H1 - 0 to 11 inches: gravelly sandy loam H2 - 11 to 18 inches: gravelly sandy loam H3 - 18 to 34 inches: very gravelly loam

H4 - 34 to 60 inches: stratified very gravelly sand to very cobbly sandy clay loam

#### **Properties and qualities**

Slope: 0 to 5 percent

Surface area covered with cobbles, stones or boulders: 3.0 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 6 to 18 inches Frequency of flooding: NoneFrequent

Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.7 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: C/D

Ecological site: R029XG027CA - Streambank

Hydric soil rating: Yes

#### **Minor Components**

#### Unnamed

Percent of map unit: 3 percent

Landform: Alluvial fans Hydric soil rating: Yes

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

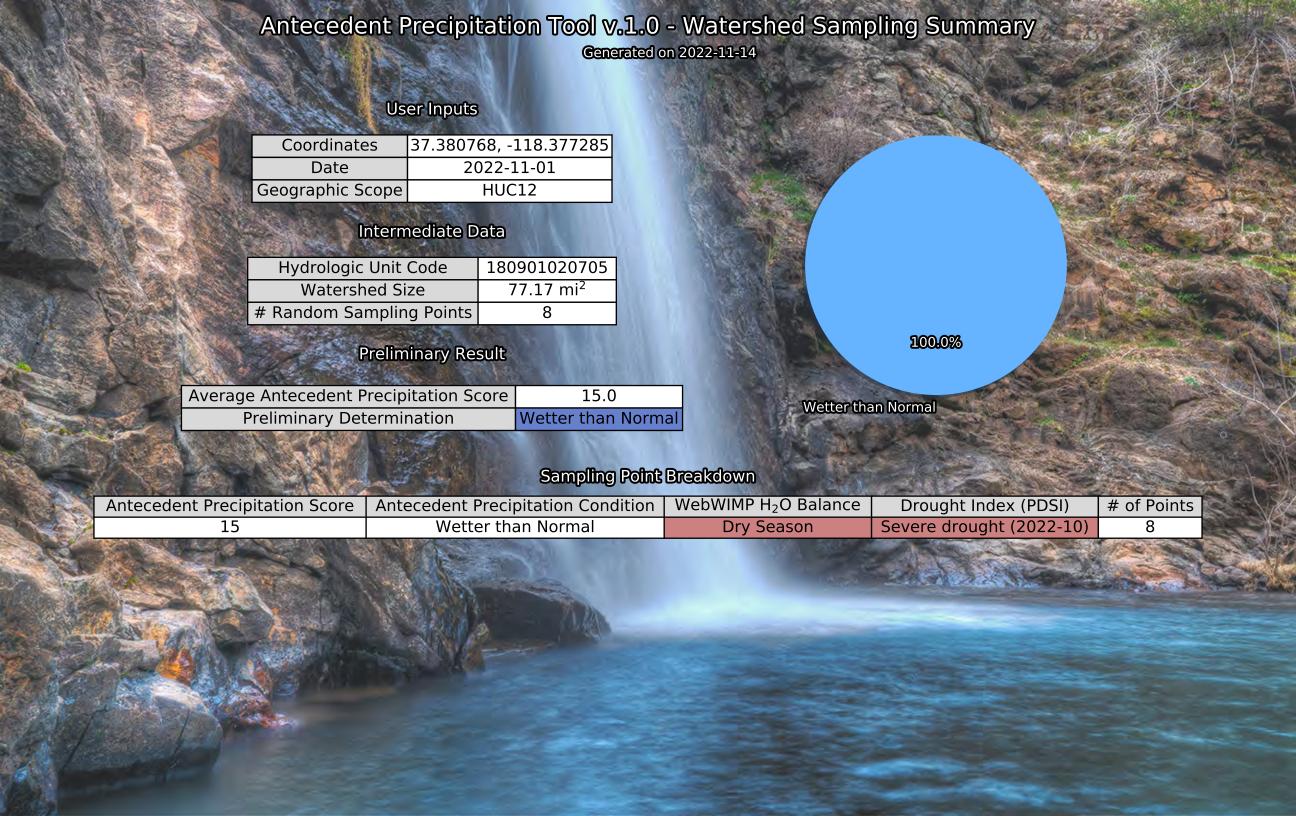
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

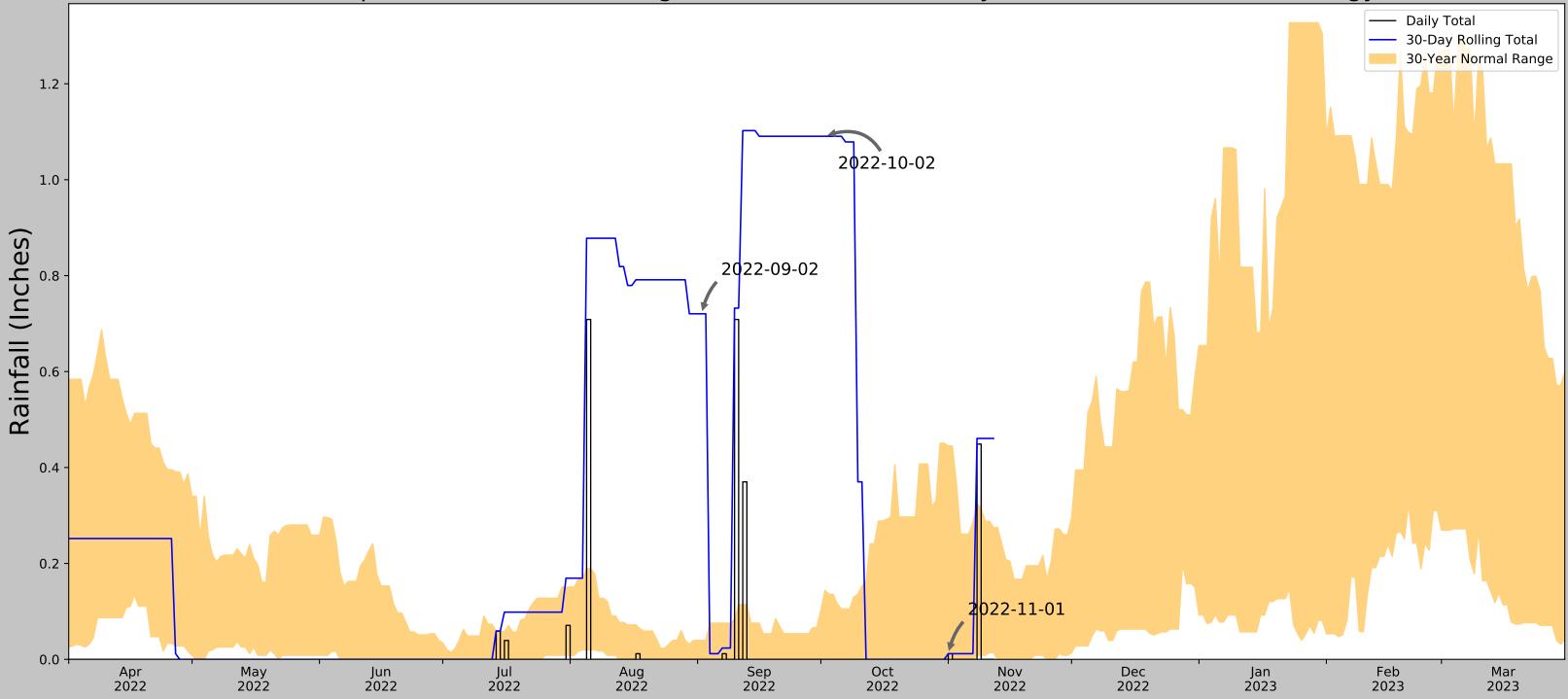
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

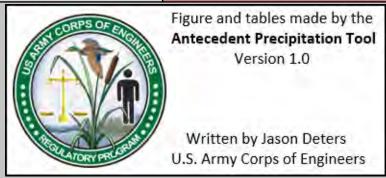
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084


#### Custom Soil Resource Report

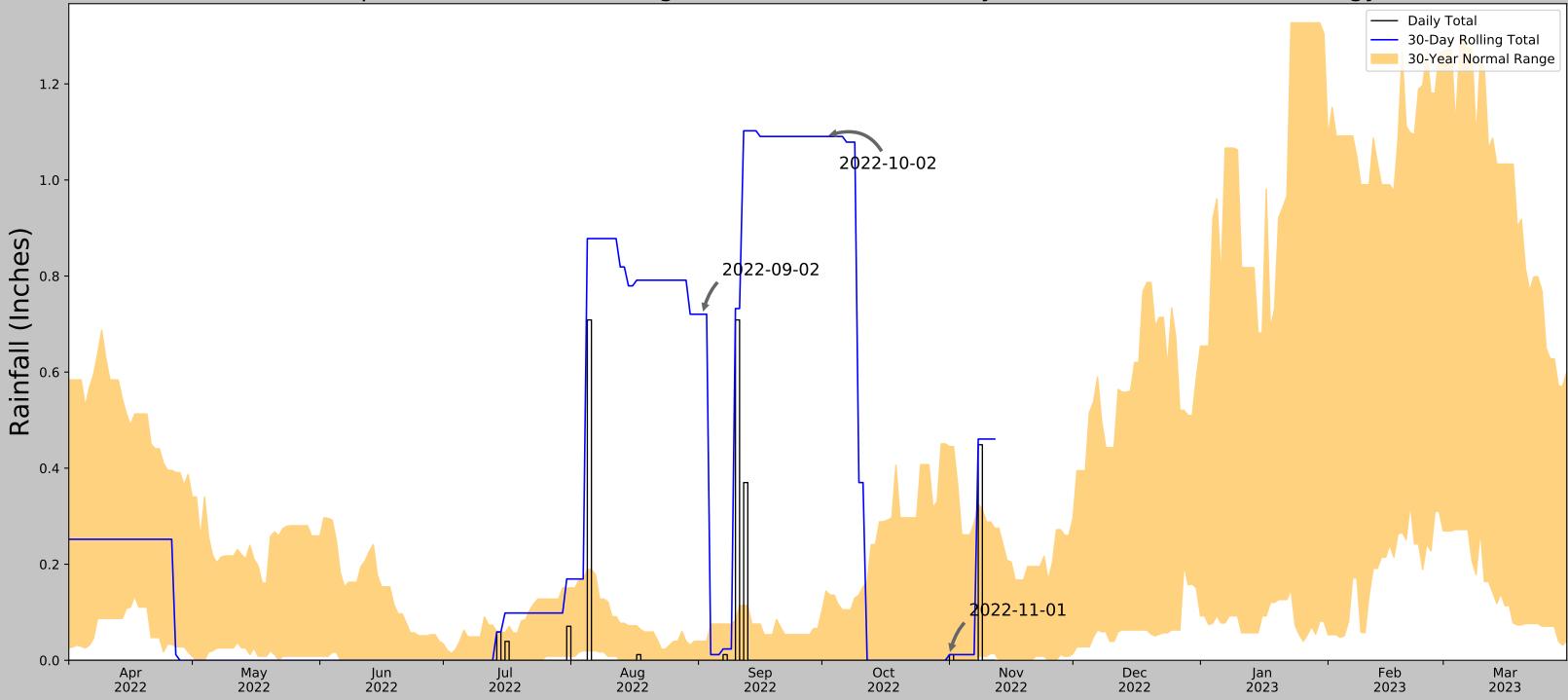

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

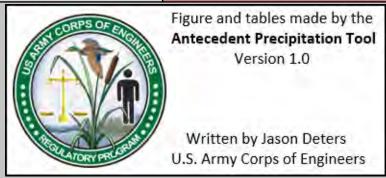

# C-2 Antecedent Precipitation Tool Results



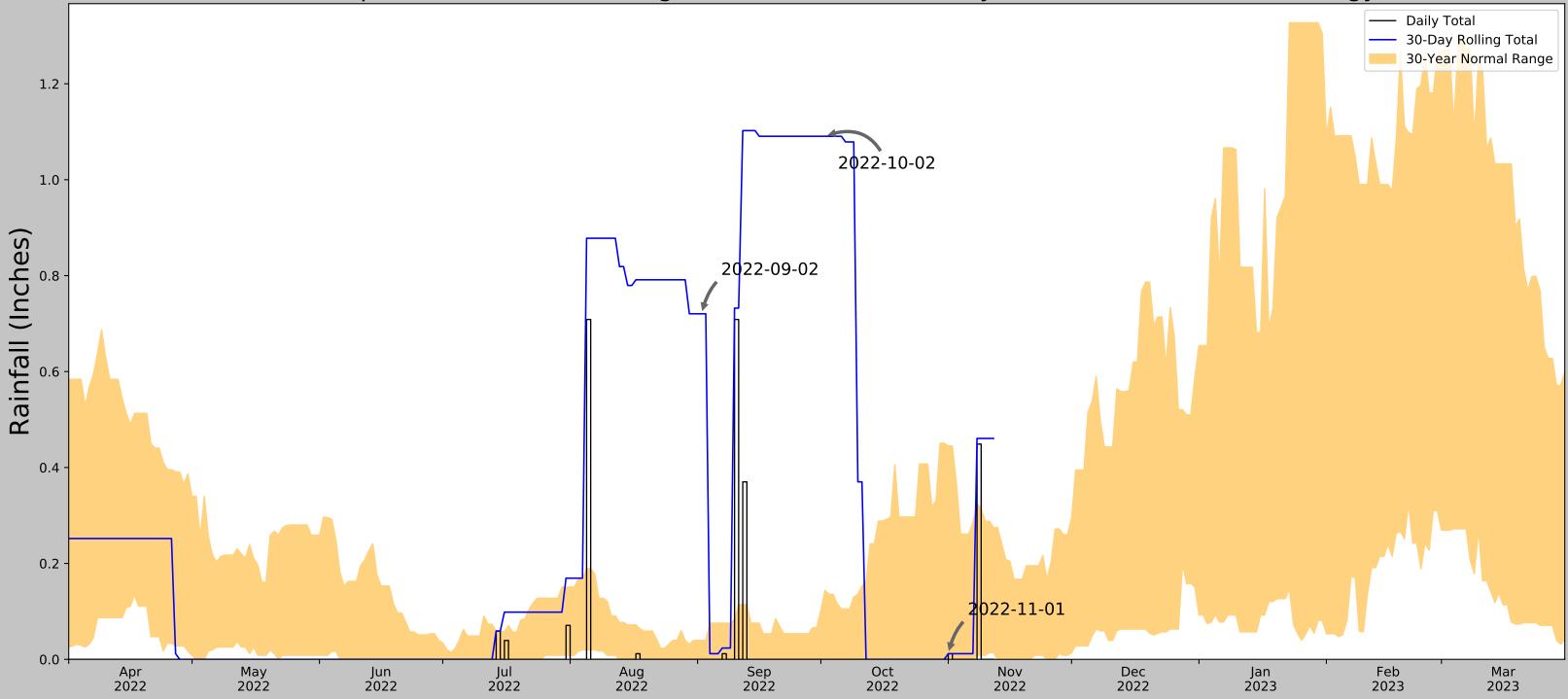



| Coordinates                      | 37.380768, -118.377285   |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 4127.6                   |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

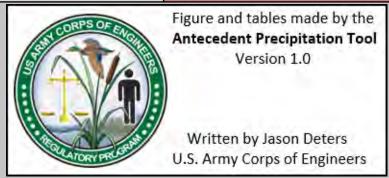



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 1.247         | 25.566      | 0.593      | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |

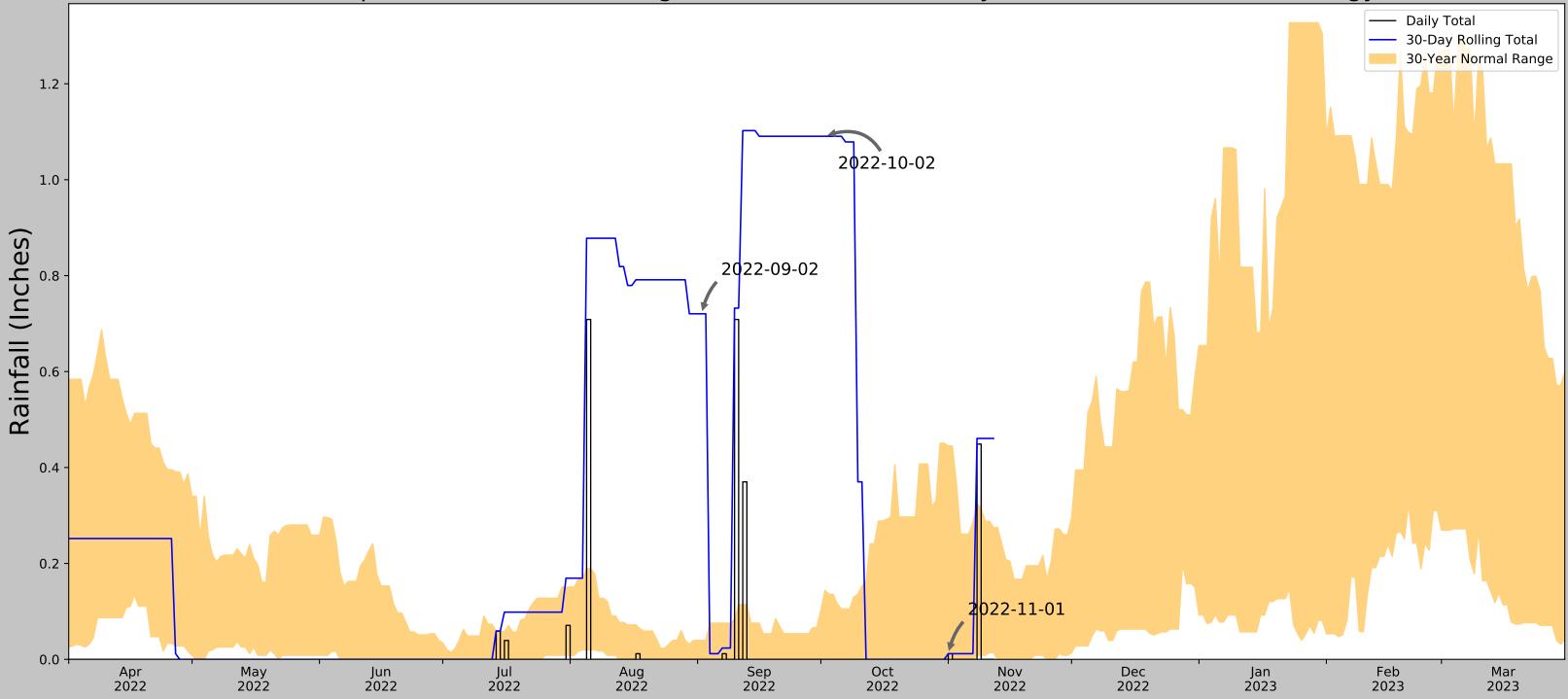



| Coordinates                      | 37.406076, -118.380802   |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 4127.6                   |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

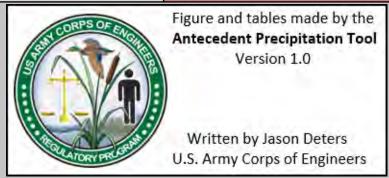



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 2.719         | 25.566      | 1.293      | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |

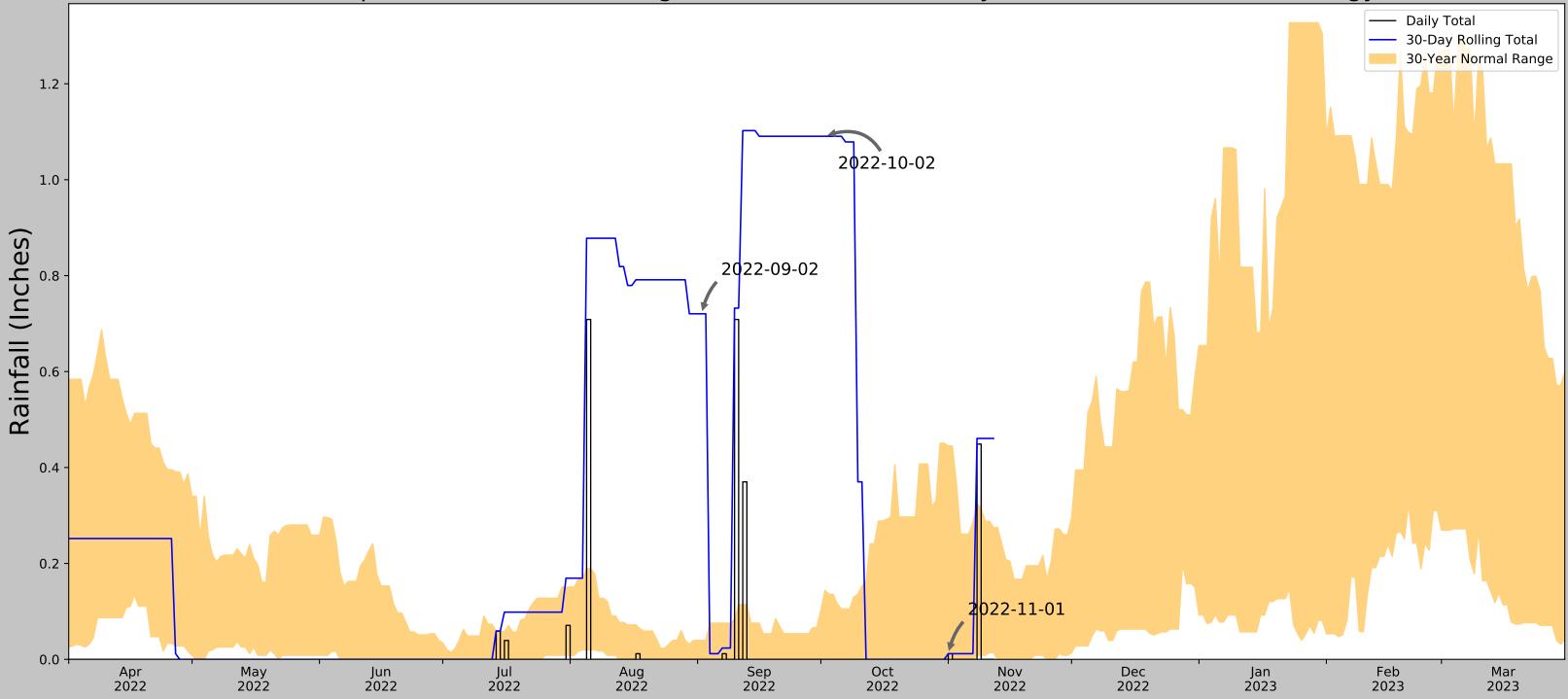



| Coordinates                      | 37.387039, -118.449967   |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 4353.86                  |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

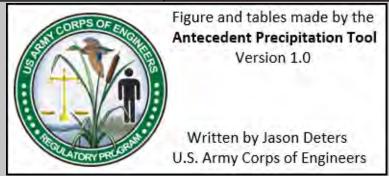



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 5.163         | 251.826     | 3.624      | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |

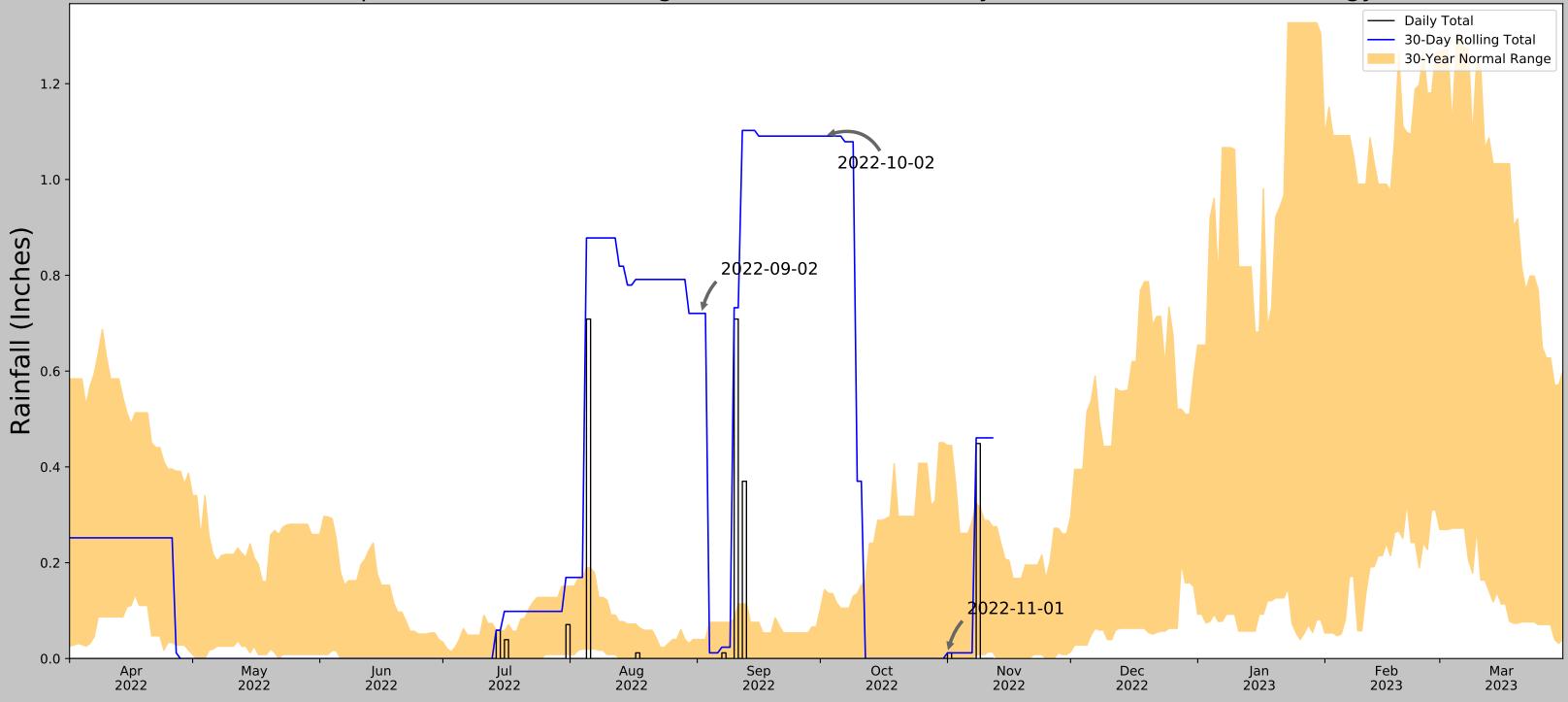



| Coordinates                      | 37.330653, -118.3379     |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 4060.56                  |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

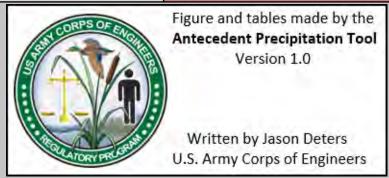



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 3.007         | 41.474      | 1.478      | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |

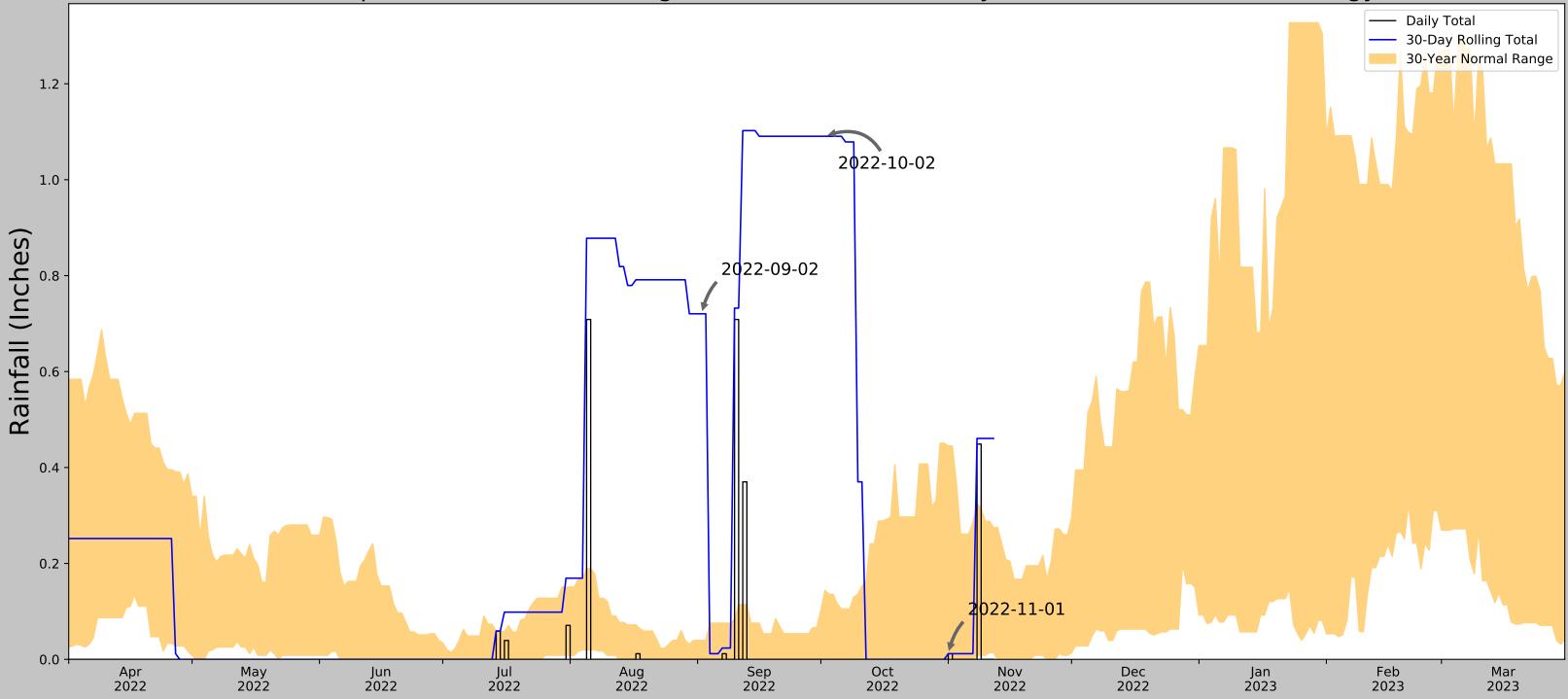



| Coordinates                      | 37.384651, -118.305248   |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 4395.61                  |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

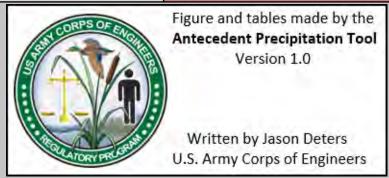



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 3.049         | 293.576     | 2.267      | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |

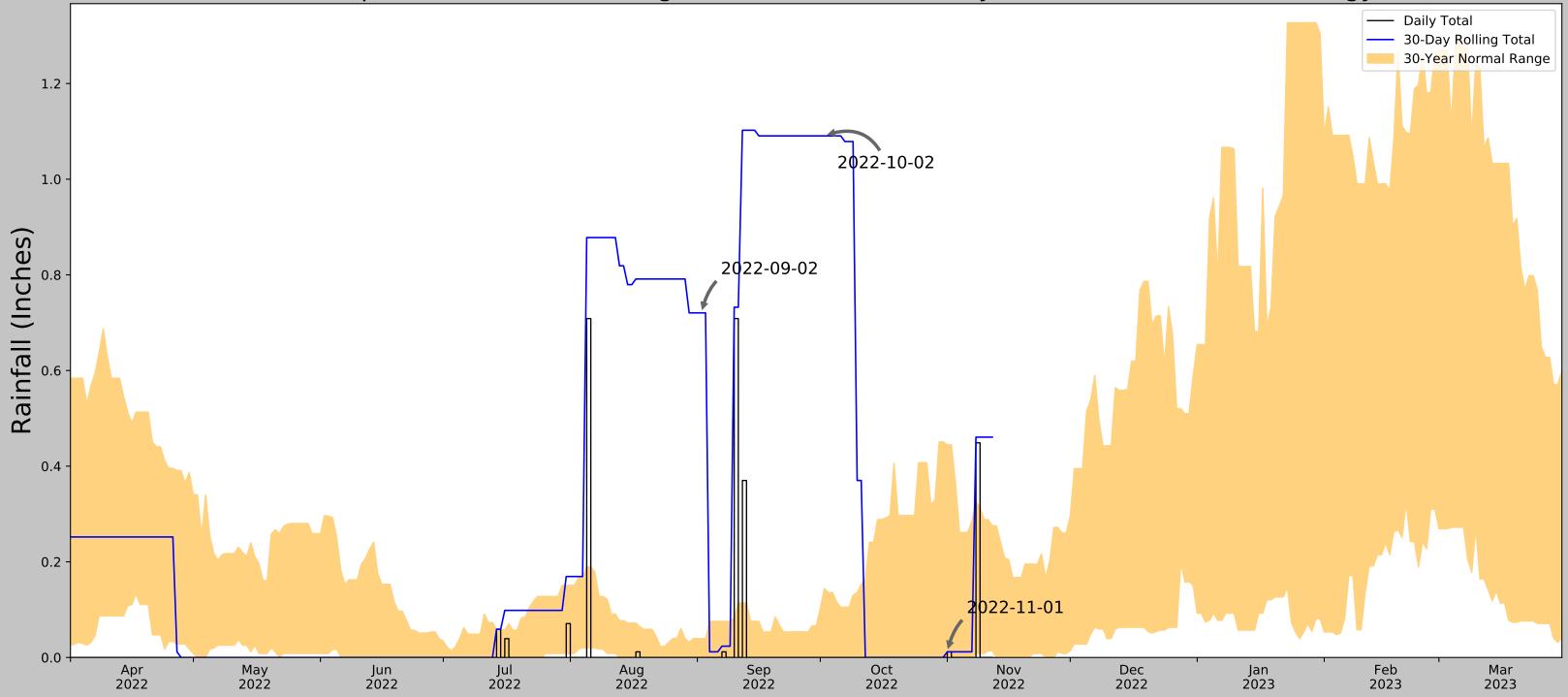



| Coordinates                      | 37.372505, -118.228118   |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 8584.11                  |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |

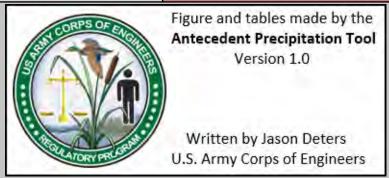



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 7.138         | 4482.076    | 35.205     | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |




| Coordinates                      | 37.320249, -118.235765   |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 7941.5                   |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |




| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 7.583         | 3839.466    | 32.527     | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |



| Coordinates                      | 37.342933, -118.48791    |
|----------------------------------|--------------------------|
| Observation Date                 | 2022-11-01               |
| Elevation (ft)                   | 4895.7                   |
| Drought Index (PDSI)             | Severe drought (2022-10) |
| WebWIMP H <sub>2</sub> O Balance | Dry Season               |

| 30 Days Ending | 30 <sup>th</sup> %ile (in) | 70 <sup>th</sup> %ile (in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product                 |
|----------------|----------------------------|----------------------------|---------------|-------------------|-----------------|--------------|-------------------------|
| 2022-11-01     | 0.0                        | 0.444882                   | 0.011811      | Normal            | 2               | 3            | 6                       |
| 2022-10-02     | 0.0                        | 0.144094                   | 1.090551      | Wet               | 3               | 2            | 6                       |
| 2022-09-02     | 0.0                        | 0.039764                   | 0.720472      | Wet               | 3               | 1            | 3                       |
| Result         |                            |                            |               |                   |                 |              | Wetter than Normal - 15 |



| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation Δ | Weighted Δ | Days Normal | Days Antecedent |
|----------------------|--------------------|----------------|---------------|-------------|------------|-------------|-----------------|
| BISHOP AP            | 37.3711, -118.3581 | 4102.034       | 7.39          | 793.666     | 9.191      | 11349       | 90              |
| BISHOP 1.7 NW        | 37.3878, -118.4141 | 4181.102       | 3.284         | 79.068      | 1.737      | 2           | 0               |
| DYER 5S              | 37.6064, -118.0    | 4899.935       | 25.49         | 797.901     | 31.809     | 2           | 0               |

# C-3 Data Sheets

| Project/Site: BIH-RSA                                                                                     | (                   | City/County       | : BISHOP/                  | INYO s                                                                 | ampling Date: _    | 11/1/2022          |
|-----------------------------------------------------------------------------------------------------------|---------------------|-------------------|----------------------------|------------------------------------------------------------------------|--------------------|--------------------|
| Applicant/Owner:                                                                                          |                     |                   |                            | State: <u>CA</u> S                                                     | ampling Point: _   | DP1                |
| Investigator(s): N. LAMAS & A. SCHWYTER                                                                   | ;                   | Section, To       | wnship, Ra                 | nge:                                                                   |                    |                    |
| Landform (hillslope, terrace, etc.): FLOODPLAIN                                                           |                     | Local relief      | f (concave,                | convex, none): concave                                                 | Slop               | oe (%): <u>0-3</u> |
| Subregion (LRR):                                                                                          | Lat: 37.3           | 3824              |                            | Long: -118.3781                                                        | Datur              | n:                 |
| Soil Map Unit Name: INYO-POLETA COMPLEX                                                                   |                     |                   |                            |                                                                        |                    |                    |
| Are climatic / hydrologic conditions on the site typical for this                                         |                     |                   |                            |                                                                        |                    |                    |
| Are Vegetation, Soil, or Hydrologys                                                                       |                     |                   |                            | Normal Circumstances" pre                                              |                    | , No               |
| Are Vegetation, Soil, or Hydrology r                                                                      |                     |                   |                            | eded, explain any answers                                              |                    |                    |
| SUMMARY OF FINDINGS – Attach site map                                                                     |                     |                   |                            |                                                                        |                    | atures, etc.       |
| Hydrophytic Vegetation Present?  Hydric Soil Present?  Wetland Hydrology Present?  Remarks:  Yes N  Yes N | ∘ _ ✓               |                   | ne Sampled<br>nin a Wetlar | Area<br>nd? Yes                                                        | _ No <u></u> ✓     |                    |
| SNOW MELT AND STREAM RUNOFF LIKELY DURATION OF GROWING SEASON FOR HYD                                     |                     |                   | r soil isn                 | N'T SATURATED FOR A                                                    | A LONG ENC         | DUGH               |
| VEGETATION – Use scientific names of plan                                                                 |                     |                   |                            |                                                                        |                    |                    |
| Tree Stratum (Plot size: 6X6 m )                                                                          | Absolute<br>% Cover | Dominant Species? |                            | Dominance Test worksh                                                  |                    |                    |
| 1. Populus tremuloides                                                                                    |                     |                   |                            | Number of Dominant Sper<br>That Are OBL, FACW, or                      |                    | (A)                |
| 2.                                                                                                        |                     |                   |                            | Total Number of Dominan                                                |                    |                    |
| 3                                                                                                         |                     |                   |                            | Species Across All Strata:                                             |                    | (B)                |
| 4                                                                                                         |                     |                   |                            | Percent of Dominant Spec                                               | cies               |                    |
| Sapling/Shrub Stratum (Plot size: 6x6 m )                                                                 | 1                   | = Total Co        | over                       | That Are OBL, FACW, or                                                 |                    | (A/B)              |
| 1. Ericameria nauseosa                                                                                    | 1                   | Yes               | UPL                        | Prevalence Index works                                                 | heet:              |                    |
| 2.                                                                                                        |                     |                   |                            | Total % Cover of:                                                      | Multiply           | y by:              |
| 3.                                                                                                        |                     |                   |                            | OBL species 0                                                          | x 1 =              | 0                  |
| 4                                                                                                         |                     |                   |                            | FACW species                                                           | x 2 =              | 0                  |
| 5                                                                                                         |                     |                   |                            | FAC species 3                                                          | x 3 =              | 9                  |
|                                                                                                           | 1                   | = Total Co        | over                       | FACU species 1                                                         | x 4 =              | 4                  |
| Herb Stratum (Plot size: 6x6 m                                                                            | 0.004               | NI -              | FAC                        |                                                                        | x 5 =              |                    |
| 1. Carex sp                                                                                               |                     |                   | FAC                        | Column Totals:5                                                        | (A)                | <u>18</u> (B)      |
| Distichlis spicata     Lepidium latifolium                                                                |                     |                   | FAC<br>FAC                 | Prevalence Index =                                                     | B/A = 3.           | .6                 |
| 4                                                                                                         |                     |                   |                            | Hydrophytic Vegetation                                                 |                    |                    |
| 5                                                                                                         |                     |                   |                            | Dominance Test is >5                                                   |                    |                    |
| 6                                                                                                         |                     |                   |                            | Prevalence Index is ≤                                                  |                    |                    |
| 7                                                                                                         |                     |                   |                            | Morphological Adapta                                                   | ations¹ (Provide s | supporting         |
| 8.                                                                                                        |                     |                   |                            | data in Remarks o                                                      |                    | *                  |
| Woody Vine Stratum (Plot size:)                                                                           | 35.002              | = Total Co        | over                       | Problematic Hydrophy                                                   | ytic Vegetation    | (Explain)          |
| 1<br>2                                                                                                    |                     |                   |                            | <sup>1</sup> Indicators of hydric soil a<br>be present, unless disturb |                    |                    |
|                                                                                                           |                     | = Total Co        |                            | Hydrophytic                                                            |                    |                    |
| % Bare Ground in Herb Stratum65                                                                           |                     |                   |                            | Vegetation<br>Present? Yes_                                            | No                 | _                  |
| Remarks:                                                                                                  |                     |                   |                            |                                                                        |                    |                    |
| Carex sp. unidentifiable this time of year, i sp are wetland plants this species was assi                 |                     |                   |                            |                                                                        | y, since mos       | st Carex           |

US Army Corps of Engineers

SOIL Sampling Point: DP1

| Depth<br>(inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Matrix Color (moist)                                                                                                                                                                                                                                           | %           | Color (moist)                                                                                                     | %                                                                                                                            | _Type <sup>1</sup>                                                       | Loc <sup>2</sup>  | Texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 YR 4/1                                                                                                                                                                                                                                                      | 85          | N/A                                                                                                               |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   | _                                                                                                                            | . ———                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                              |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   | _                                                                                                                            |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
| Type: C=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oncentration, D=De                                                                                                                                                                                                                                             | pletion, RM | =Reduced Matrix, C                                                                                                | S=Covered                                                                                                                    | d or Coate                                                               | ed Sand G         | rains. <sup>2</sup> Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ocation: PL=Pore Lining, M=Matrix.                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             | LRRs, unless other                                                                                                |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                                                       |
| Histosol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A1)                                                                                                                                                                                                                                                           |             | Sandy Red                                                                                                         | lox (S5)                                                                                                                     |                                                                          |                   | 1 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Muck (A9) (LRR C)                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pipedon (A2)                                                                                                                                                                                                                                                   |             | Stripped M                                                                                                        |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Muck (A10) (LRR B)                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stic (A3)                                                                                                                                                                                                                                                      |             | Loamy Mu                                                                                                          |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ced Vertic (F18)                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | en Sulfide (A4)                                                                                                                                                                                                                                                | 0)          | Loamy Gle                                                                                                         |                                                                                                                              | (F2)                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parent Material (TF2)                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d Layers (A5) ( <b>LRR</b><br>uck (A9) ( <b>LRR D</b> )                                                                                                                                                                                                        | C)          | Depleted M<br>Redox Dar                                                                                           |                                                                                                                              | (E6)                                                                     |                   | Otne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r (Explain in Remarks)                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d Below Dark Surfa                                                                                                                                                                                                                                             | ce (A11)    | Nedox Dai                                                                                                         |                                                                                                                              | . ,                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ark Surface (A12)                                                                                                                                                                                                                                              | 00 (/ ( / ) | Redox Dep                                                                                                         |                                                                                                                              | , ,                                                                      |                   | 3Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s of hydrophytic vegetation and                                                                                                                                                                                                                                                                     |
| <del></del> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mucky Mineral (S1)                                                                                                                                                                                                                                             |             | Vernal Poo                                                                                                        |                                                                                                                              | ,                                                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d hydrology must be present,                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bleyed Matrix (S4)                                                                                                                                                                                                                                             |             |                                                                                                                   |                                                                                                                              |                                                                          |                   | unless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | disturbed or problematic.                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Layer (if present):                                                                                                                                                                                                                                            |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
| Restrictive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |             | <u></u>                                                                                                           |                                                                                                                              |                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |
| Туре:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ches):                                                                                                                                                                                                                                                         |             |                                                                                                                   |                                                                                                                              |                                                                          |                   | Hydric So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | il Present? Yes No _✓                                                                                                                                                                                                                                                                               |
| Type:<br>Depth (in<br>Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |             |                                                                                                                   |                                                                                                                              |                                                                          |                   | Hydric So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | il Present? Yes No _✓                                                                                                                                                                                                                                                                               |
| Type:<br>Depth (in:<br>Remarks:<br>15% COB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ches):BLE WITHIN S(                                                                                                                                                                                                                                            |             |                                                                                                                   |                                                                                                                              |                                                                          |                   | Hydric So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | il Present? Yes No _✓                                                                                                                                                                                                                                                                               |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ches):BLE WITHIN So                                                                                                                                                                                                                                            | OIL PROP    |                                                                                                                   |                                                                                                                              |                                                                          |                   | Hydric So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | il Present? Yes No _✓                                                                                                                                                                                                                                                                               |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLE WITHIN SO                                                                                                                                                                                                                                                  | OIL PROF    | FILE                                                                                                              |                                                                                                                              |                                                                          |                   | Hydric So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | il Present? Yes No _✓                                                                                                                                                                                                                                                                               |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLE WITHIN SO                                                                                                                                                                                                                                                  | OIL PROF    |                                                                                                                   | oly)                                                                                                                         |                                                                          |                   | Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ondary Indicators (2 or more required)                                                                                                                                                                                                                                                              |
| Type: Depth (in- Remarks: 15% COB  YDROLO Wetland Hy Primary India Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GY drology Indicators cators (minimum of Water (A1)                                                                                                                                                                                                            | OIL PROF    | FILE  d; check all that app  Market Salt Crus                                                                     | t (B11)                                                                                                                      |                                                                          |                   | Second Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ondary Indicators (2 or more required) Water Marks (B1) ( <b>Riverine</b> )                                                                                                                                                                                                                         |
| Type: Depth (in- Remarks:  15% COB  YDROLO  Wetland Hyer Primary India Surface High Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GY drology Indicators cators (minimum of Water (A1) ater Table (A2)                                                                                                                                                                                            | OIL PROF    | ed; check all that app  Salt Crusi  Biotic Cru                                                                    | t (B11)<br>st (B12)                                                                                                          |                                                                          |                   | Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ondary Indicators (2 or more required) Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> )                                                                                                                                                                              |
| Type: Depth (incomplete in the property of the property o | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3)                                                                                                                                                                                    | OIL PROP    | ed; check all that app Salt Crust Biotic Cru Aquatic Ir                                                           | t (B11)<br>ist (B12)<br>nvertebrate                                                                                          | , ,                                                                      |                   | Seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine)                                                                                                                                                                 |
| Type: Depth (in: Remarks:  15% COB  YDROLO  Wetland Hy  Primary India  Surface High Watan Saturation Water M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GY drology Indicators eators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive                                                                                                                                                                | OIL PROP    | ed; check all that app Salt Crus Biotic Cru Aquatic Ir Hydrogen                                                   | t (B11)<br>ust (B12)<br>nvertebrate<br>n Sulfide O                                                                           | dor (C1)                                                                 |                   | Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)                                                                                                                                         |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive at Deposits (B2) (No                                                                                                                                           | OIL PROF    | ed; check all that app Salt Crus Biotic Cru Aquatic Ir Hydrogen Oxidized                                          | t (B11) ust (B12) nvertebrate a Sulfide Oo Rhizosphe                                                                         | dor (C1)<br>eres along                                                   | _                 | <u>Sect</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2)                                                                                                             |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive ont Deposits (B2) (Nonrive cosits (B3) (Nonrive                                                                                                                | OIL PROF    | ed; check all that app Salt Crus Biotic Cru Aquatic Ir Hydrogen Oxidized Presence                                 | t (B11) ust (B12) nvertebrate u Sulfide Oo Rhizosphe of Reduce                                                               | dor (C1)<br>eres along<br>ed Iron (C4                                    | 4)                | Second — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)                                                                                       |
| Type: Depth (in- Remarks:  15% COB  YDROLO  Wetland Hye Primary India Surface High Wa Saturatia Water M Sedimen Drift Dep Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive nt Deposits (B2) (Nonrive cosits (B3) (Nonrive Cosits (B3) (Nonrive Cosits (B6)                                                                                | OIL PROF    | ed; check all that app Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ire                     | t (B11) ust (B12) nvertebrate u Sulfide O Rhizosphe of Reduce on Reducti                                                     | dor (C1)<br>eres along<br>ed Iron (C4<br>ion in Tille                    | 4)                | Second Se | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)                                             |
| Type: Depth (in: Remarks:  15% COB  YDROLO  Wetland Hye Primary India Surface High Wa Saturatia Water M Sedimer Drift Dep Surface Inundati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive nt Deposits (B2) (No cosits (B3) (Nonrive Soil Cracks (B6) on Visible on Aerial                                                                                | OIL PROP    | ed; check all that app Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ire Thin Muc            | t (B11) ust (B12) nvertebrate Sulfide Oo Rhizosphe of Reduce on Reducti k Surface (                                          | dor (C1)<br>eres along<br>ed Iron (C4<br>ion in Tille<br>(C7)            | 4)                | Second Se | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                       |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive nt Deposits (B2) (No cosits (B3) (Nonrive Soil Cracks (B6) on Visible on Aerial stained Leaves (B9)                                                            | OIL PROP    | ed; check all that app Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ire Thin Muc            | t (B11) ust (B12) nvertebrate u Sulfide O Rhizosphe of Reduce on Reducti                                                     | dor (C1)<br>eres along<br>ed Iron (C4<br>ion in Tille<br>(C7)            | 4)                | Second Se | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)                                             |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY  drology Indicators eators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive nt Deposits (B2) (No cosits (B3) (Nonrive Soil Cracks (B6) on Visible on Aerial tained Leaves (B9) vations:                                                   | OIL PROP    | ETILE  Ed; check all that app  Salt Crus Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Thin Muci     | t (B11) ust (B12) evertebrate u Sulfide Or Rhizosphe of Reduce on Reducti k Surface ( cplain in Re                           | dor (C1) eres along ed Iron (C4 fon in Tille (C7) emarks)                | 4)<br>d Soils (C  | Second Se | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                       |
| Type: Depth (in- Remarks:  15% COB  YDROLO  Wetland Hy  Primary India  Surface  High Wa  Saturatia  Water M  Sedimer  Drift Dep  Surface  Inundati  Water-S  Field Obser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive nt Deposits (B2) (No cosits (B3) (Nonrive Soil Cracks (B6) on Visible on Aerial atained Leaves (B9) vations: er Present?                                       | OIL PROF    | ed; check all that app Salt Crus Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Thin Muci             | t (B11) ust (B12) nvertebrate Sulfide Or Rhizosphe of Reduce on Reducti k Surface ( plain in Re                              | dor (C1) eres along ed Iron (C4 fon in Tille (C7) emarks)                | 4)<br>d Soils (Co | Second Se | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                       |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive nt Deposits (B2) (No cosits (B3) (Nonrive cosits (B3) (Nonrive cosits (B6) on Visible on Aerial tained Leaves (B9) vations: er Present? Present?               | OIL PROP    | Ed; check all that app Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Other (Ex            | t (B11) list (B12) nvertebrate li Sulfide Or Rhizosphe li Geduce on Reducti k Surface ( cplain in Re nches):                 | dor (C1)<br>eres along<br>ed Iron (C-<br>ion in Tille<br>(C7)<br>emarks) | 4)<br>d Soils (Co | Second Se | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5) |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive ont Deposits (B2) (Nonrive cosits (B3) (Nonrive cosits (B3) (Nonrive cosits (B6) on Visible on Aerial tained Leaves (B9) vations: er Present? Present? resent? | OIL PROF    | ed; check all that app  Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Thin Muci Other (Ex | t (B11) list (B12) nvertebrate a Sulfide Oo Rhizosphe of Reduce on Reducti k Surface ( eplain in Re anches): nches): nches): | dor (C1) eres along ed Iron (C4 on in Tille (C7) emarks)                 | 4) d Soils (Co    | ots (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3)                       |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive ont Deposits (B2) (Nonrive cosits (B3) (Nonrive cosits (B3) (Nonrive cosits (B6) on Visible on Aerial tained Leaves (B9) vations: er Present? Present? resent? | OIL PROF    | Ed; check all that app Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Other (Ex            | t (B11) list (B12) nvertebrate a Sulfide Oo Rhizosphe of Reduce on Reducti k Surface ( eplain in Re anches): nches): nches): | dor (C1) eres along ed Iron (C4 on in Tille (C7) emarks)                 | 4) d Soils (Co    | ots (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5) |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive ont Deposits (B2) (Nonrive cosits (B3) (Nonrive cosits (B3) (Nonrive cosits (B6) on Visible on Aerial tained Leaves (B9) vations: er Present? Present? resent? | OIL PROF    | ed; check all that app  Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Thin Muci Other (Ex | t (B11) list (B12) nvertebrate a Sulfide Oo Rhizosphe of Reduce on Reducti k Surface ( eplain in Re anches): nches): nches): | dor (C1) eres along ed Iron (C4 on in Tille (C7) emarks)                 | 4) d Soils (Co    | ots (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5) |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive ont Deposits (B2) (Nonrive cosits (B3) (Nonrive cosits (B3) (Nonrive cosits (B6) on Visible on Aerial tained Leaves (B9) vations: er Present? Present? resent? | OIL PROP    | ed; check all that app  Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Thin Muci Other (Ex | t (B11) list (B12) nvertebrate a Sulfide Oo Rhizosphe of Reduce on Reducti k Surface ( eplain in Re anches): nches): nches): | dor (C1) eres along ed Iron (C4 on in Tille (C7) emarks)                 | 4) d Soils (Co    | ots (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5) |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GY drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) (Nonrive ont Deposits (B2) (Nonrive cosits (B3) (Nonrive cosits (B3) (Nonrive cosits (B6) on Visible on Aerial tained Leaves (B9) vations: er Present? Present? resent? | OIL PROP    | ed; check all that app  Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ir Thin Muci Other (Ex | t (B11) list (B12) nvertebrate a Sulfide Oo Rhizosphe of Reduce on Reducti k Surface ( eplain in Re anches): nches): nches): | dor (C1) eres along ed Iron (C4 on in Tille (C7) emarks)                 | 4) d Soils (Co    | ots (C3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ondary Indicators (2 or more required) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Shallow Aquitard (D3) FAC-Neutral Test (D5) |

| Project/Site: BIH-RSA                                             | (            | City/Cou | inty: BISHOP/     | INYO                                             | Sampling Date     | : 11/1/2022     |
|-------------------------------------------------------------------|--------------|----------|-------------------|--------------------------------------------------|-------------------|-----------------|
| Applicant/Owner:                                                  |              |          |                   | State: CA                                        | Sampling Point    | t: DP2          |
| Investigator(s): N. LAMAS & A. SCHWYTER                           | :            | Section, | Township, Rai     | nge:                                             |                   |                 |
| Landform (hillslope, terrace, etc.): <u>SEASONAL POND</u>         |              |          |                   |                                                  |                   |                 |
| Subregion (LRR):                                                  |              |          |                   |                                                  |                   |                 |
|                                                                   |              |          |                   | NWI classific                                    |                   |                 |
| Are climatic / hydrologic conditions on the site typical for this |              |          | _                 |                                                  |                   |                 |
| Are Vegetation, Soil, or Hydrology signature and this             | •            |          |                   | Normal Circumstances"                            | ,                 | √ No            |
|                                                                   |              |          |                   |                                                  |                   | <u>V</u> NO     |
| Are Vegetation, Soil, or Hydrology na                             |              |          |                   | eded, explain any answe                          |                   |                 |
| SUMMARY OF FINDINGS – Attach site map s                           | showing      | samp     | ling point le     | ocations, transects                              | i, important i    | eatures, etc.   |
| Hydrophytic Vegetation Present? Yes No                            |              | Is       | s the Sampled     | Area                                             |                   |                 |
| Hydric Soil Present? Yes No                                       |              |          | -                 | nd? Yes                                          | No ✓              |                 |
| Wetland Hydrology Present? Yes   ✓ No                             | ·            |          |                   |                                                  |                   |                 |
| Remarks:                                                          |              |          |                   |                                                  |                   |                 |
| SNOW MELT AND STREAM RUNOFF LIKELY P                              | _            |          |                   | N'T SATURATED FO                                 | R A LONG EN       | 10UGH           |
| DURATION OF GROWING SEASON FOR HYDE                               | RIC INDIC    | CATOR    | RS                |                                                  |                   |                 |
| VEGETATION – Use scientific names of plant                        | s.           |          |                   |                                                  |                   |                 |
| Troe Stratum (Diet size: 10V10 m.)                                | Absolute     |          | ant Indicator     | Dominance Test work                              | (sheet:           |                 |
|                                                                   | _            |          | es? Status<br>FAC | Number of Dominant S<br>That Are OBL, FACW,      |                   | 3 (/\)          |
| Populus fremontii     2                                           |              |          |                   | That Ale OBL, FACW,                              | 01 FAC            | <u>3</u> (A)    |
| 3                                                                 |              |          |                   | Total Number of Domir<br>Species Across All Stra |                   | 4 (B)           |
| 4.                                                                |              |          |                   |                                                  |                   | <u> </u>        |
|                                                                   | 2            |          |                   | Percent of Dominant S<br>That Are OBL, FACW,     |                   | 75 (A/R)        |
| Sapling/Shrub Stratum (Plot size: 6x6 m)                          |              | •        |                   |                                                  |                   | <u>73</u> (7(B) |
| 1. Salix exigua                                                   |              |          |                   | Prevalence Index wor                             |                   |                 |
| 2                                                                 |              |          |                   | Total % Cover of:                                |                   |                 |
| 3                                                                 |              |          |                   | OBL species                                      |                   |                 |
| 4                                                                 |              |          |                   | FACW species                                     |                   |                 |
| 5                                                                 |              | = Total  | Cover             | FACU species                                     |                   |                 |
| Herb Stratum (Plot size: 6x6 m )                                  |              | = TOtal  | Cover             | UPL species                                      |                   |                 |
| 1. Carex sp                                                       | 4            | Yes      | FAC               | Column Totals: 0                                 |                   |                 |
| 2. Rumex crispus                                                  | 1            | No       | FAC               |                                                  |                   |                 |
| 3. Stipa speciosa                                                 |              |          | <u>FACU</u>       | Prevalence Index                                 |                   | <u>NaN</u>      |
| 4. Glycyrrhiza lepidota                                           |              |          |                   | Hydrophytic Vegetation                           |                   |                 |
| 5                                                                 |              |          |                   | ✓ Dominance Test is                              |                   |                 |
| 6                                                                 |              |          |                   | Prevalence Index i Morphological Ada             |                   | do oupporting   |
| 7                                                                 |              |          |                   | data in Remark                                   | is or on a separa | te sheet)       |
| 8                                                                 | 15.1         |          |                   | Problematic Hydro                                | phytic Vegetatio  | n¹ (Explain)    |
| Woody Vine Stratum (Plot size:)                                   | 13.1         | _= 10tai | Cover             |                                                  |                   |                 |
| 1                                                                 | -            |          |                   | <sup>1</sup> Indicators of hydric so             |                   |                 |
| 2                                                                 |              |          |                   | be present, unless dist                          | urbed or problem  | natic.          |
|                                                                   |              | = Total  |                   | Hydrophytic                                      |                   |                 |
| % Bare Ground in Herb Stratum85 % Cover                           | of Biotic Cı | rust     | 0                 | Vegetation<br>Present? Ye                        | es_√No_           |                 |
| Remarks:                                                          |              |          |                   | l                                                |                   |                 |
| Carex sp. unidentifiable this time of year, ir                    | landee       | ana na   | nsition with      | nin wetland hound                                | ary sinco m       | nost Carey      |
| sp are wetland plants this species was assign                     |              |          |                   |                                                  | ary, since m      | USI CALEX       |
| sh are meriana highris rins sheries mas assis                     | IIICU FAC    | ב נט אנ  | e conserva        | uve                                              |                   |                 |

SOIL Sampling Point: DP2

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Depth                                                                                                 | Matrix                                                                                                                                                                                                        |               |                                                                                                                                        | ox Featur                                                                                      |                                | . 2              | _                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (inches)                                                                                              | Color (moist)                                                                                                                                                                                                 | %             | Color (moist)                                                                                                                          | %                                                                                              | Type'                          | Loc <sup>2</sup> | Texture                                      | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0-1                                                                                                   | 10 YR 3/1                                                                                                                                                                                                     | 90            | NA                                                                                                                                     | 0                                                                                              |                                |                  | LS                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1-10                                                                                                  | 10 YR 5/4                                                                                                                                                                                                     |               | 7.5 YR 5/8                                                                                                                             | _ 5                                                                                            | C                              | <u>M</u>         | LS                                           | FE SOFT MASSES, 15% COBBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10-14                                                                                                 | 2.5 Y 5/4                                                                                                                                                                                                     | 80            | NA                                                                                                                                     | 0                                                                                              |                                |                  | <u>S</u>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14+                                                                                                   | 5Y 5/3                                                                                                                                                                                                        | 95            | 7.5 YR 5/8                                                                                                                             | 7                                                                                              | <u>C</u>                       | _M               | SICL                                         | REDOX FT DISTINCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Hydric Soil  Histosol Histic Ep Black Hi Hydroge Stratified 1 cm Mu Depleted Thick Da Sandy M Sandy G | Indicators: (App<br>(A1)<br>Dipedon (A2)<br>Stic (A3)<br>In Sulfide (A4)<br>Id Layers (A5) (LRI<br>Inck (A9) (LRR D)<br>Id Below Dark Surf<br>Bark Surface (A12)<br>Incky Mineral (S1)<br>Beleyed Matrix (S4) | licable to al | M=Reduced Matrix, C I LRRs, unless othe  Sandy Red Stripped M Loamy Muc Loamy Gle Depleted M Redox Dar Depleted D Redox Dep Vernal Poo | lox (S5)<br>atrix (S6)<br>cky Miner<br>yed Matri<br>yed Matrix (F3)<br>k Surface<br>bark Surfa | al (F1) x (F2) ) (F6) cce (F7) | ed Sand G        | Indicators  1 cm I 2 cm I Reduce Red P Other | cation: PL=Pore Lining, M=Matrix.  In for Problematic Hydric Soils <sup>3</sup> :  Muck (A9) (LRR C)  Muck (A10) (LRR B)  Idea Vertic (F18)  Idea vertic (F18 |
|                                                                                                       | ayer (if present)                                                                                                                                                                                             |               |                                                                                                                                        |                                                                                                |                                |                  |                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Туре:                                                                                                 |                                                                                                                                                                                                               |               |                                                                                                                                        |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth (inc                                                                                            | ches):                                                                                                                                                                                                        |               |                                                                                                                                        |                                                                                                |                                |                  | Hydric Soil                                  | Present? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HYDROLO                                                                                               | GY                                                                                                                                                                                                            |               |                                                                                                                                        |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                       | drology Indicator                                                                                                                                                                                             | rs:           |                                                                                                                                        |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                       |                                                                                                                                                                                                               |               | ed; check all that app                                                                                                                 | ly)                                                                                            |                                |                  | Seco                                         | ndary Indicators (2 or more required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                       | Water (A1)                                                                                                                                                                                                    | •             | Salt Crust                                                                                                                             | •                                                                                              |                                |                  |                                              | Vater Marks (B1) (Riverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                       | ter Table (A2)                                                                                                                                                                                                |               | Biotic Cru                                                                                                                             | st (B12)                                                                                       |                                |                  | s                                            | Sediment Deposits (B2) (Riverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Saturation                                                                                            | on (A3)                                                                                                                                                                                                       |               | Aquatic In                                                                                                                             | vertebrat                                                                                      | es (B13)                       |                  | 0                                            | Orift Deposits (B3) (Riverine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ✓ Water M                                                                                             | arks (B1) ( <b>Nonriv</b>                                                                                                                                                                                     | rerine)       | Hydrogen                                                                                                                               | Sulfide C                                                                                      | Odor (C1)                      |                  | [                                            | Prainage Patterns (B10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sedimer                                                                                               | nt Deposits (B2) (N                                                                                                                                                                                           | Nonriverine   |                                                                                                                                        |                                                                                                | eres along                     | -                |                                              | Ory-Season Water Table (C2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                       | oosits (B3) (Nonri                                                                                                                                                                                            | verine)       |                                                                                                                                        |                                                                                                | ed Iron (C                     | ,                |                                              | Crayfish Burrows (C8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                       | Soil Cracks (B6)                                                                                                                                                                                              |               |                                                                                                                                        |                                                                                                | tion in Tille                  | d Soils (C       |                                              | Saturation Visible on Aerial Imagery (C9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                       | on Visible on Aeria                                                                                                                                                                                           |               | , <del></del>                                                                                                                          |                                                                                                |                                |                  |                                              | Shallow Aquitard (D3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Field Obser                                                                                           | tained Leaves (B9                                                                                                                                                                                             | 9)            | Other (Ex                                                                                                                              | piain in R                                                                                     | emarks)                        |                  |                                              | AC-Neutral Test (D5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                       |                                                                                                                                                                                                               | Voc           | No / Donth (in                                                                                                                         | abaa).                                                                                         |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Surface Wate                                                                                          |                                                                                                                                                                                                               |               | No ✓ Depth (in No ✓ Depth (in                                                                                                          |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Water Table Saturation Profincled cap                                                                 | resent?                                                                                                                                                                                                       |               | No ✓ Depth (in                                                                                                                         |                                                                                                |                                |                  | land Hydrolog                                | y Present? Yes <u>√</u> No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                       |                                                                                                                                                                                                               | am gauge, m   | nonitoring well, aerial                                                                                                                | photos, p                                                                                      | revious ins                    | spections),      | , if available:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                       |                                                                                                                                                                                                               |               | ERIAL IMAGERY                                                                                                                          |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Remarks:                                                                                              |                                                                                                                                                                                                               | 0, 2020 7     |                                                                                                                                        |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                       |                                                                                                                                                                                                               |               |                                                                                                                                        |                                                                                                |                                |                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Project/Site: BIH-RSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ect/Site: BIH-RSA City/County: BISH |            |              |                                      |                   |              | /2022   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|--------------|--------------------------------------|-------------------|--------------|---------|
| Applicant/Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |            |              | State: CA                            | Sampling Poir     | nt: <u> </u> | )P3     |
| Investigator(s): N. LAMAS & A. SCHWYTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     | Section. T | ownship. Ra  | nae:                                 |                   |              |         |
| Landform (hillslope, terrace, etc.): DRAINAGE CHANNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |            |              | _                                    |                   |              |         |
| Subregion (LRR): C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |            |              |                                      |                   |              |         |
| Soil Map Unit Name: DEHY-DEHY CALCAREOUS COMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |            |              |                                      |                   |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |            |              |                                      |                   |              |         |
| Are climatic / hydrologic conditions on the site typical for this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              |                                      |                   | ,            |         |
| Are Vegetation, Soil, or Hydrology signs of the sign of |                                     |            |              | Normal Circumstances" p              | oresent? Yes_     | <u> </u>     | 0       |
| Are Vegetation, Soil, or Hydrology na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aturally prol                       | blematic?  | (If ne       | eded, explain any answe              | ers in Remarks.)  |              |         |
| SUMMARY OF FINDINGS - Attach site map s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | howing                              | samplii    | ng point l   | ocations, transects                  | , important       | feature      | s, etc. |
| Hydrophytic Vegetation Present? Yes ✓ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |            |              |                                      |                   |              |         |
| Hydrophytic Vegetation Present? Yes   Hydric Soil Present? Yes   ✓ No  Yes  ✓ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |            | he Sampled   |                                      |                   |              |         |
| Wetland Hydrology Present? Yes ✓ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | wit        | hin a Wetlar | nd? Yes <u>√</u>                     | No                |              |         |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |            |              |                                      |                   |              |         |
| POINT IS PHYSICALLY IN-CHANNEL, PSSC M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APPED I                             | N UPLA     | ND 8 m E     | AST OF CURRENT                       | CHANNEL           |              |         |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              |                                      |                   |              |         |
| VEGETATION – Use scientific names of plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s.                                  |            |              |                                      |                   |              |         |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Dominar    | nt Indicator | Dominance Test work                  | sheet:            |              |         |
| Tree Stratum (Plot size: 6X6 m )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |            | ? Status     | Number of Dominant S                 |                   |              |         |
| 1. Populus fremontii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                   | Yes        | FACU         | That Are OBL, FACW,                  |                   | 4            | (A)     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | Total Number of Domin                | nant              |              |         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | Species Across All Stra              | ata:              | 6            | (B)     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | -          |              | Percent of Dominant S                | pecies            |              |         |
| Sapling/Shrub Stratum (Plot size: 6x6 m )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                   | = Total C  | over         | That Are OBL, FACW,                  |                   | 67           | (A/B)   |
| 1. Salix exigua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                   | Yes        | FACW         | Prevalence Index wor                 | ksheet:           |              |         |
| 2. Rosa woodsii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | No         |              | Total % Cover of:                    | Mul               | tiply by:    |         |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |            |              | OBL species                          |                   |              |         |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |            |              | FACW species                         |                   |              |         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | FAC species                          |                   |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | = Total C  | over         | FACU species                         | x 4 =             | 0            | _       |
| Herb Stratum (Plot size: 6x6 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |            |              | UPL species                          | x 5 =             | 0            | _       |
| 1. Carex sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                |            | <u>FAC</u>   | Column Totals:                       | ) (A)             | 0            | (B)     |
| 2. Erigeron canadensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | -          | <u>FAC</u>   | Prevalence Index                     | . D/A             | NaN          |         |
| 3. Stipa speciosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            | FACU         | Hydrophytic Vegetation               |                   | INGIN        | _       |
| 4. <u>Distichlis spicata</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |            |              | ✓ Dominance Test is                  |                   |              |         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | Prevalence Index i                   |                   |              |         |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | Morphological Ada                    |                   | de suppoi    | rtina   |
| 7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |            |              | data in Remark                       | s or on a separa  | ate sheet)   | 9       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                | - Total C  | over         | Problematic Hydro                    | phytic Vegetation | on¹ (Expla   | in)     |
| Woody Vine Stratum (Plot size:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                | _ Total C  | ovei         |                                      |                   |              |         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | <sup>1</sup> Indicators of hydric so |                   |              | must    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |            |              | be present, unless distr             | urbed or proble   | natic.       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                   | = Total C  | over         | Hydrophytic<br>Vegetation            |                   |              |         |
| % Bare Ground in Herb Stratum99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of Biotic Cr                        | rust       | 0            | Present? Ye                          | es_✓ No           |              |         |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |            |              | I                                    | •                 |              |         |
| Carex sp. unidentifiable this time of year, ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | landeer                             | ane noc    | ition with   | nin wetland hound                    | ary sincon        | nost Ca      | rov     |
| sp are wetland plants this species was assign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |            |              |                                      | ary, since II     | iost Cd      | ιCΧ     |
| 3h are meriana hianta mia sheries mas assig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SIICU FAC                           | ב נט מפ    | COLISELAG    | LIVE                                 |                   |              |         |

| SOIL |  |  |  |  |  |  |  |  |  | Sampling | Point: _ | D | P3 |
|------|--|--|--|--|--|--|--|--|--|----------|----------|---|----|
|      |  |  |  |  |  |  |  |  |  |          |          |   |    |
|      |  |  |  |  |  |  |  |  |  |          |          |   |    |

| Depth                         | Matrix                                   | to the dep  | Redc                   | x Feature  |                   |                  |                  | •                                               |
|-------------------------------|------------------------------------------|-------------|------------------------|------------|-------------------|------------------|------------------|-------------------------------------------------|
| (inches)                      | Color (moist)                            | %           | Color (moist)          | %          | Type <sup>1</sup> | Loc <sup>2</sup> | Texture          | Remarks                                         |
| 0-24                          | 10 YR 2/1                                | 60          | 2.5 y 3/1              | 58         |                   | M                | SIL              |                                                 |
|                               |                                          |             | 7.5 YR 5/6             | 2          | С                 | M                |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        | _          |                   |                  |                  |                                                 |
|                               |                                          |             |                        | _          |                   |                  |                  | _                                               |
|                               | -                                        |             | -                      |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             | =Reduced Matrix, C     |            |                   | ed Sand Gr       |                  | n: PL=Pore Lining, M=Matrix.                    |
| -                             |                                          | able to all | LRRs, unless othe      |            | ted.)             |                  |                  | Problematic Hydric Soils <sup>3</sup> :         |
| Histosol                      |                                          |             | Sandy Red              |            |                   |                  | 1 cm Muck        |                                                 |
| Black His                     | pipedon (A2)                             |             | Stripped Mag           |            | al (F1)           |                  | Reduced \        | (A10) ( <b>LRR B</b> )                          |
|                               | n Sulfide (A4)                           |             | Loamy Gle              |            |                   |                  |                  | t Material (TF2)                                |
|                               | Layers (A5) (LRR                         | C)          | Depleted M             |            |                   |                  |                  | plain in Remarks)                               |
| 1 cm Mu                       | ick (A9) ( <b>LRR D</b> )                |             | ✓ Redox Dark           |            | . ,               |                  |                  |                                                 |
|                               | d Below Dark Surfac                      | e (A11)     | Depleted D             |            |                   |                  | 2                |                                                 |
|                               | ark Surface (A12)                        |             | Redox Dep              |            | (F8)              |                  |                  | ydrophytic vegetation and                       |
| -                             | lucky Mineral (S1)<br>sleyed Matrix (S4) |             | Vernal Poo             | IS (F9)    |                   |                  |                  | rology must be present,<br>rbed or problematic. |
|                               | _ayer (if present):                      |             |                        |            |                   |                  | unless distai    | bed of problematic.                             |
|                               | , ,                                      |             |                        |            |                   |                  |                  |                                                 |
| ,, <u> </u>                   | ches):                                   |             |                        |            |                   |                  | Hydric Soil Pre  | sent? Yes <u>√</u> No                           |
| Remarks:                      |                                          |             |                        |            |                   |                  | 1 - 7            |                                                 |
| 1                             |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
| HYDROLO                       | GY                                       |             |                        |            |                   |                  |                  |                                                 |
| Wetland Hyd                   | drology Indicators:                      | <u> </u>    |                        |            |                   |                  |                  |                                                 |
| _                             |                                          |             | d; check all that app  | lv)        |                   |                  | Secondar         | y Indicators (2 or more required)               |
|                               | Water (A1)                               |             | Salt Crust             |            |                   |                  |                  | r Marks (B1) ( <b>Riverine</b> )                |
|                               | iter Table (A2)                          |             | Biotic Cru             | ` ,        |                   |                  |                  | nent Deposits (B2) (Riverine)                   |
| Saturation                    | ` ,                                      |             | Aquatic In             | ` ,        | es (B13)          |                  |                  | Deposits (B3) (Riverine)                        |
| Water M                       | arks (B1) (Nonriver                      | ine)        | Hydrogen               | Sulfide C  | odor (C1)         |                  |                  | age Patterns (B10)                              |
| Sedimer                       | nt Deposits (B2) (No                     | nriverine)  | Oxidized I             | Rhizosph   | eres along        | Living Roc       | ots (C3) Dry-S   | season Water Table (C2)                         |
| ✓ Drift Dep                   | oosits (B3) (Nonrive                     | rine)       | Presence               | of Reduc   | ed Iron (C        | 4)               | Crayf            | ish Burrows (C8)                                |
| Surface                       | Soil Cracks (B6)                         |             | Recent Iro             | n Reduct   | tion in Tille     | d Soils (C6      | S) Satur         | ation Visible on Aerial Imagery (C9)            |
| ✓ Inundation                  | on Visible on Aerial                     | Imagery (B  | 37) Thin Muck          | s Surface  | (C7)              |                  | Shalle           | ow Aquitard (D3)                                |
| Water-S                       | tained Leaves (B9)                       |             | Other (Ex              | plain in R | emarks)           |                  | FAC-             | Neutral Test (D5)                               |
| Field Observ                  |                                          |             |                        |            |                   |                  |                  |                                                 |
| Surface Water                 |                                          |             | No <u>✓</u> Depth (in  |            |                   | l l              |                  |                                                 |
| Water Table                   |                                          |             | No ✓ Depth (in         |            |                   |                  |                  |                                                 |
| Saturation Pr                 |                                          | 'es         | No ✓ Depth (in         | iches):    |                   | Wetla            | and Hydrology Pr | esent? Yes No                                   |
| (includes cap<br>Describe Red |                                          | n gauge, m  | onitoring well, aerial | photos, p  | revious ins       | pections).       | if available:    |                                                 |
|                               | (2.2.)                                   | 3 3-,       | <b>3</b>               | , [        |                   | //               | -                |                                                 |
| Remarks:                      |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |
|                               |                                          |             |                        |            |                   |                  |                  |                                                 |

| Project/Site: BIH-RSA                                            |                 | City/County  | : BISHOP                   | P/INYO Sampling Date: 11/1/202                                 |                    |                           |  |  |  |
|------------------------------------------------------------------|-----------------|--------------|----------------------------|----------------------------------------------------------------|--------------------|---------------------------|--|--|--|
| Applicant/Owner:                                                 |                 |              |                            | State: CA                                                      | _ Sampling Poin    | t: <u>DP4</u>             |  |  |  |
| Investigator(s): N. LAMAS & A. SCHWYTER                          |                 | Section, To  | ownship, Ra                | inge:                                                          |                    |                           |  |  |  |
| Landform (hillslope, terrace, etc.): <u>UPLAND</u>               |                 | Local relie  | f (concave,                | convex, none): none                                            |                    | Slope (%): <u>0-3</u>     |  |  |  |
| Subregion (LRR):                                                 | Lat: <u>37.</u> | 3815         |                            | Long: <u>-118.3785</u>                                         | Da                 | atum:                     |  |  |  |
| Soil Map Unit Name: DEHY-DEHY CALCAREOUS COMI                    |                 |              |                            |                                                                |                    |                           |  |  |  |
| Are climatic / hydrologic conditions on the site typical for the |                 |              | _                          |                                                                |                    |                           |  |  |  |
| Are Vegetation, Soil, or Hydrology                               |                 |              |                            | "Normal Circumstances"                                         |                    | <b>√</b> No               |  |  |  |
| Are Vegetation, Soil, or Hydrology                               |                 |              |                            | eeded, explain any answ                                        |                    |                           |  |  |  |
| SUMMARY OF FINDINGS – Attach site map                            |                 |              |                            |                                                                |                    |                           |  |  |  |
| Hydrophytic Vegetation Present? Yes                              | No <b>√</b>     | lo 4l        | na Camplas                 | I Area                                                         |                    |                           |  |  |  |
| Hydric Soil Present? Yes                                         |                 |              | ne Sampled<br>nin a Wetlar |                                                                | No <u>√</u>        | •                         |  |  |  |
| Wetland Hydrology Present? Yes                                   | No <u> </u>     | With         | iiii a vvetiai             | 103                                                            |                    | <u> </u>                  |  |  |  |
| Remarks:                                                         |                 |              |                            |                                                                |                    |                           |  |  |  |
|                                                                  |                 |              |                            |                                                                |                    |                           |  |  |  |
|                                                                  |                 |              |                            |                                                                |                    |                           |  |  |  |
| VEGETATION – Use scientific names of plan                        | nts.            |              |                            |                                                                |                    |                           |  |  |  |
|                                                                  | Absolute        | Dominant     | t Indicator                | Dominance Test wor                                             | ksheet:            |                           |  |  |  |
| Tree Stratum (Plot size:)                                        | % Cover         |              |                            | Number of Dominant S                                           |                    |                           |  |  |  |
| 1                                                                |                 |              |                            | That Are OBL, FACW                                             | , or FAC:          | 1 (A)                     |  |  |  |
| 2                                                                |                 |              |                            | Total Number of Domi                                           |                    | 4 (-)                     |  |  |  |
| 3                                                                |                 |              |                            | Species Across All Str                                         | ata:               | 4 (B)                     |  |  |  |
| 4                                                                |                 | = Total Co   |                            | Percent of Dominant S                                          |                    | 2E (A/D)                  |  |  |  |
| Sapling/Shrub Stratum (Plot size: 6x6 m )                        |                 | _ = 10(a) 00 | over                       | That Are OBL, FACW                                             | or FAC:            | (A/B)                     |  |  |  |
| 1. Ericameria nauseosa                                           |                 | Yes          | UPL                        | Prevalence Index wo                                            |                    |                           |  |  |  |
| 2. Atriplex polycarpa                                            |                 | Yes          |                            | Total % Cover of:                                              |                    |                           |  |  |  |
| 3                                                                |                 |              |                            |                                                                | x 1 =              |                           |  |  |  |
| 4                                                                |                 |              |                            | FACW species $\frac{0}{2}$                                     |                    |                           |  |  |  |
| 5                                                                |                 | = Total Co   | over                       | FACU species 2                                                 |                    |                           |  |  |  |
| Herb Stratum (Plot size: 6x6 m )                                 |                 | _= 10ta1 Ct  | ovei                       | UPL species 1                                                  |                    |                           |  |  |  |
| 1. Stipa speciosa                                                | 8               | Yes          | FACU                       | Column Totals:                                                 |                    |                           |  |  |  |
| 2. <u>Distichlis spicata</u>                                     |                 | Yes          | FAC                        |                                                                |                    |                           |  |  |  |
| 3. <u>Glycyrrhiza lepidota</u>                                   |                 |              | FAC                        |                                                                | x = B/A =          | 3.8                       |  |  |  |
| 4                                                                |                 |              |                            | Hydrophytic Vegetat  Dominance Test i                          |                    |                           |  |  |  |
| 5                                                                |                 |              |                            | Prevalence Index                                               |                    |                           |  |  |  |
| 6<br>7                                                           |                 |              |                            | Morphological Ad                                               |                    | de supportina             |  |  |  |
| 8                                                                |                 |              |                            | data in Remark                                                 | ks or on a separa  | ate sheet)                |  |  |  |
| 0.                                                               |                 | = Total Co   | over                       | Problematic Hydro                                              | ophytic Vegetation | on <sup>1</sup> (Explain) |  |  |  |
| Woody Vine Stratum (Plot size:)                                  |                 | -            |                            | 4                                                              |                    |                           |  |  |  |
| 1                                                                |                 |              | <del></del>                | <sup>1</sup> Indicators of hydric so<br>be present, unless dis |                    |                           |  |  |  |
| 2                                                                |                 |              | ·                          |                                                                |                    |                           |  |  |  |
|                                                                  | 0               | = Total Co   | over                       | Hydrophytic<br>Vegetation                                      |                    |                           |  |  |  |
| % Bare Ground in Herb Stratum85                                  | er of Biotic C  | rust         | 0                          | Present? Y                                                     | es No              |                           |  |  |  |
| Remarks:                                                         |                 |              |                            |                                                                |                    |                           |  |  |  |
|                                                                  |                 |              |                            |                                                                |                    |                           |  |  |  |
|                                                                  |                 |              |                            |                                                                |                    |                           |  |  |  |
|                                                                  |                 |              |                            |                                                                |                    |                           |  |  |  |

| SOIL        |                     |           |                     |            |                   |                  |               | Sampling Point: | DP4 |
|-------------|---------------------|-----------|---------------------|------------|-------------------|------------------|---------------|-----------------|-----|
| Profile Des | cription: (Describe | to the de | oth needed to docun | nent the i | ndicator          | or confirr       | n the absence | of indicators.) |     |
| Depth       | Matrix              |           | Redox               | x Feature  | S                 |                  |               |                 |     |
| (inches)    | Color (moist)       | %         | Color (moist)       | %          | Type <sup>1</sup> | Loc <sup>2</sup> | Texture       | Remarks         |     |
| 0-6         | 10 YR 3/2           | 100       | N/A                 | 0          |                   |                  | SL            |                 |     |

| 0-0        | 10 11 3/2             | 100           | IN/ A            |                         | <u>JL</u>                                                    |  |  |  |  |
|------------|-----------------------|---------------|------------------|-------------------------|--------------------------------------------------------------|--|--|--|--|
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
| -          |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
| ¹Type: C:  | =Concentration, D=De  | epletion, RM= | =Reduced Matrix, | CS=Covered or Coated Sa | and Grains. <sup>2</sup> Location: PL=Pore Lining, M=Matrix. |  |  |  |  |
|            | oil Indicators: (Appl |               |                  |                         | Indicators for Problematic Hydric Soils <sup>3</sup> :       |  |  |  |  |
| Histo      | sol (A1)              |               | Sandy R          | edox (S5)               | 1 cm Muck (A9) (LRR C)                                       |  |  |  |  |
| Histic     | Epipedon (A2)         |               |                  | Matrix (S6)             | 2 cm Muck (A10) ( <b>LRR B</b> )                             |  |  |  |  |
| Black      | Histic (A3)           |               | Loamy M          | lucky Mineral (F1)      | Reduced Vertic (F18)                                         |  |  |  |  |
| Hydro      | ogen Sulfide (A4)     |               | Loamy G          | Bleyed Matrix (F2)      | Red Parent Material (TF2)                                    |  |  |  |  |
| Strati     | fied Layers (A5) (LRF | R C)          | Depleted         | Matrix (F3)             | Other (Explain in Remarks)                                   |  |  |  |  |
| 1 cm       | Muck (A9) (LRR D)     |               | Redox D          | ark Surface (F6)        |                                                              |  |  |  |  |
| Deple      | eted Below Dark Surfa | ace (A11)     | Depleted         | I Dark Surface (F7)     |                                                              |  |  |  |  |
| Thick      | Dark Surface (A12)    |               | Redox D          | epressions (F8)         | <sup>3</sup> Indicators of hydrophytic vegetation and        |  |  |  |  |
| Sand       | y Mucky Mineral (S1)  |               | Vernal P         | ools (F9)               | wetland hydrology must be present,                           |  |  |  |  |
| Sand       | y Gleyed Matrix (S4)  |               |                  |                         | unless disturbed or problematic.                             |  |  |  |  |
| Restrictiv | e Layer (if present): |               |                  |                         |                                                              |  |  |  |  |
| Type:      |                       |               |                  |                         |                                                              |  |  |  |  |
| Depth      | (inches):             |               |                  |                         | Hydric Soil Present? Yes No _✓                               |  |  |  |  |
| Remarks:   |                       |               |                  |                         | -                                                            |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |
| HYDROL     | _OGY                  |               |                  |                         |                                                              |  |  |  |  |
|            |                       |               |                  |                         |                                                              |  |  |  |  |

| HYDROLOGY                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wetland Hydrology Indicators:                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                                                                                          |
| Primary Indicators (minimum of one required; cl                                                                                                                                      | heck all that apply)                                                                                                                                                                | Secondary Indicators (2 or more required)                                                                                                                                                                |
| <ul> <li>Surface Water (A1)</li> <li>High Water Table (A2)</li> <li>Saturation (A3)</li> <li>Water Marks (B1) (Nonriverine)</li> <li>Sediment Deposits (B2) (Nonriverine)</li> </ul> | <ul> <li>Salt Crust (B11)</li> <li>Biotic Crust (B12)</li> <li>Aquatic Invertebrates (B13)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Livi</li> </ul> | <ul> <li>Water Marks (B1) (Riverine)</li> <li>Sediment Deposits (B2) (Riverine)</li> <li>Drift Deposits (B3) (Riverine)</li> <li>Drainage Patterns (B10)</li> <li>Dry-Season Water Table (C2)</li> </ul> |
| <ul> <li>Drift Deposits (B3) (Nonriverine)</li> <li>Surface Soil Cracks (B6)</li> <li>Inundation Visible on Aerial Imagery (B7)</li> <li>Water-Stained Leaves (B9)</li> </ul>        | Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Sc Thin Muck Surface (C7) Other (Explain in Remarks)                                                                  | Crayfish Burrows (C8)                                                                                                                                                                                    |
| Field Observations:                                                                                                                                                                  | ,                                                                                                                                                                                   |                                                                                                                                                                                                          |
| Water Table Present? Yes No                                                                                                                                                          | ✓ Depth (inches):   ✓ Depth (inches):    Depth (inches):                                                                                                                            | Wetland Hydrology Present? Yes No _✓                                                                                                                                                                     |
| Describe Recorded Data (stream gauge, monito                                                                                                                                         | oring well, aerial photos, previous inspec                                                                                                                                          | tions), if available:                                                                                                                                                                                    |
| Remarks:                                                                                                                                                                             |                                                                                                                                                                                     |                                                                                                                                                                                                          |

| Project/Site: BIH-RSA                                        |                   | City/County | y: BISHOP/   | P/INYO Sampling Date: 11/1/202            |                                |                       |  |  |  |
|--------------------------------------------------------------|-------------------|-------------|--------------|-------------------------------------------|--------------------------------|-----------------------|--|--|--|
| Applicant/Owner:                                             |                   |             |              | State: CA                                 | Sampling Poin                  | t: <u>DP5</u>         |  |  |  |
| Investigator(s): N. LAMAS & A. SCHWYTER                      |                   | Section, To | ownship, Ra  | nge:                                      |                                |                       |  |  |  |
| Landform (hillslope, terrace, etc.): RIPARIAN                |                   | Local relie | f (concave,  | convex, none): conca                      | ve s                           | Slope (%): <u>0-3</u> |  |  |  |
| Subregion (LRR):                                             | Lat: <u>37.</u>   | 3829        |              | Long: <u>-118.3757</u>                    | Da                             | atum:                 |  |  |  |
| Soil Map Unit Name: XEROFLUVENTS                             |                   |             |              | NWI class                                 | fication: PSSC                 |                       |  |  |  |
| Are climatic / hydrologic conditions on the site typical for | this time of year | ar? Yes _   | ✓ No_        | (If no, explain in                        | Remarks.)                      |                       |  |  |  |
| Are Vegetation, Soil, or Hydrology                           | significantly     | disturbed?  | Are '        | "Normal Circumstances                     | " present? Yes _               | <b>√</b> No           |  |  |  |
| Are Vegetation, Soil, or Hydrology                           |                   |             |              | eeded, explain any ansv                   | vers in Remarks.)              |                       |  |  |  |
| SUMMARY OF FINDINGS – Attach site ma                         | ap showing        | samplir     | ng point l   | ocations, transec                         | ts, important                  | features, etc.        |  |  |  |
|                                                              | No                | ls ti       | ne Sampleo   | I Area                                    |                                |                       |  |  |  |
|                                                              | No                |             | nin a Wetlaı |                                           | ✓ No                           |                       |  |  |  |
| Wetland Hydrology Present? Yes  Remarks:                     | No <u>√</u>       |             |              |                                           |                                |                       |  |  |  |
| Remarks.                                                     |                   |             |              |                                           |                                |                       |  |  |  |
|                                                              |                   |             |              |                                           |                                |                       |  |  |  |
|                                                              |                   |             |              |                                           |                                |                       |  |  |  |
| VEGETATION – Use scientific names of pl                      | ants.             |             |              |                                           |                                |                       |  |  |  |
|                                                              | Absolute          |             | t Indicator  | Dominance Test wo                         | rksheet:                       |                       |  |  |  |
| Tree Stratum (Plot size:)                                    | % Cover           |             |              | Number of Dominant                        | •                              | 2                     |  |  |  |
| 1                                                            |                   |             |              | That Are OBL, FACV                        | V, or FAC:                     | 3 (A)                 |  |  |  |
| 2<br>3                                                       |                   |             |              | Total Number of Don                       |                                | 3 (B)                 |  |  |  |
| 4                                                            |                   |             |              | Species Across All S                      | <u></u>                        | <u>3</u> (B)          |  |  |  |
|                                                              |                   | = Total Co  |              | Percent of Dominant<br>That Are OBL, FACV |                                | 100 (A/B)             |  |  |  |
| Sapling/Shrub Stratum (Plot size: 1X1 m)                     | ' <u>-</u>        | -           |              |                                           |                                | (A/B)                 |  |  |  |
| 1. Salix exigua                                              |                   |             | FACW_        | Prevalence Index w                        |                                |                       |  |  |  |
| 2. Rosa woodsii                                              |                   |             |              | Total % Cover of                          |                                |                       |  |  |  |
| 3                                                            |                   |             |              | OBL species                               |                                |                       |  |  |  |
| 4         5                                                  |                   |             |              | FAC species                               |                                |                       |  |  |  |
| 0                                                            |                   | = Total Co  | over         | FACU species                              |                                |                       |  |  |  |
| Herb Stratum (Plot size: 1X1 m)                              |                   |             |              | UPL species                               |                                |                       |  |  |  |
| 1. <u>Lepidium latifolium</u>                                |                   |             |              | Column Totals:                            | 0 (A) _                        | 0 (B)                 |  |  |  |
| 2                                                            |                   |             |              | Dravalance Ind                            | ex = B/A =                     | NaN                   |  |  |  |
| 3                                                            |                   |             |              | Hydrophytic Vegeta                        |                                | <u>INGIN</u>          |  |  |  |
| 4                                                            |                   |             |              | ✓ Dominance Test                          |                                |                       |  |  |  |
| 5<br>6                                                       |                   |             |              | Prevalence Inde                           |                                |                       |  |  |  |
| 7.                                                           |                   |             |              | Morphological A                           | daptations <sup>1</sup> (Provi | de supporting         |  |  |  |
| 8.                                                           |                   |             |              |                                           | rks or on a separa             | ,                     |  |  |  |
|                                                              |                   | = Total Co  | over         | Problematic Hyd                           | rophytic Vegetation            | on' (Explain)         |  |  |  |
| Woody Vine Stratum (Plot size:)                              |                   |             |              | <sup>1</sup> Indicators of hydric s       | coil and watland h             | udrology must         |  |  |  |
| 1                                                            |                   |             |              | be present, unless di                     |                                |                       |  |  |  |
| 2                                                            |                   | = Total Co  | OVAT         | Hydrophytic                               |                                |                       |  |  |  |
| 00 00                                                        |                   |             |              | Vegetation                                | , , ,                          |                       |  |  |  |
|                                                              | over of Biotic C  | rust        | <u>U</u>     | Present?                                  | res <u>√</u> No                |                       |  |  |  |
| Remarks:                                                     |                   |             |              |                                           |                                |                       |  |  |  |
|                                                              |                   |             |              |                                           |                                |                       |  |  |  |
|                                                              |                   |             |              |                                           |                                |                       |  |  |  |
|                                                              |                   |             |              |                                           |                                |                       |  |  |  |

SOIL Sampling Point: <u>DP5</u>

| Profile Desc                  | ription: (Describe           | to the dep  | oth needed to docu      | ment the    | indicator         | or confirn       | n the absence of indicators.)                                            |          |
|-------------------------------|------------------------------|-------------|-------------------------|-------------|-------------------|------------------|--------------------------------------------------------------------------|----------|
| Depth                         | Matrix                       |             |                         | x Feature   | S _ 1             | . 2              |                                                                          |          |
| (inches)                      | Color (moist)                | %           | Color (moist)           | %           | Type <sup>1</sup> | Loc <sup>2</sup> | Texture Remarks                                                          |          |
| 0-7                           | 2.5Y 3/1                     | 85          | 7.5YR 5/8               |             | <u>C</u>          | M                | SL                                                                       |          |
| 7+                            | 2.5Y 5/2                     | 60          | NA                      | 0           |                   |                  | <u>S</u>                                                                 |          |
|                               |                              |             |                         | _           |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         | _           | · <del></del>     |                  |                                                                          |          |
|                               |                              |             |                         | -           |                   | ·                |                                                                          |          |
|                               |                              |             |                         | <u> </u>    | · <del></del>     | <del></del>      |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             | =Reduced Matrix, C      |             |                   | ed Sand Gı       |                                                                          |          |
| •                             |                              | able to all | I LRRs, unless othe     |             | ed.)              |                  | Indicators for Problematic Hydric Soils <sup>3</sup> :                   |          |
| Histosol                      | ,                            |             | Sandy Red               |             |                   |                  | 1 cm Muck (A9) (LRR C)                                                   |          |
|                               | pipedon (A2)                 |             | Stripped M              | , ,         | 1 (54)            |                  | 2 cm Muck (A10) ( <b>LRR B</b> )                                         |          |
| Black His                     | stic (A3)<br>n Sulfide (A4)  |             | Loamy Mud<br>Loamy Gle  |             |                   |                  | <ul><li>Reduced Vertic (F18)</li><li>Red Parent Material (TF2)</li></ul> |          |
|                               | l Layers (A5) ( <b>LRR (</b> | C)          | Depleted M              |             | . (Г2)            |                  | Other (Explain in Remarks)                                               |          |
|                               | ck (A9) ( <b>LRR D</b> )     | •,          | ✓ Redox Dari            | , ,         | (F6)              |                  |                                                                          |          |
|                               | Below Dark Surfac            | e (A11)     | Depleted D              |             | . ,               |                  |                                                                          |          |
| Thick Da                      | rk Surface (A12)             |             | Redox Dep               | ressions (  | F8)               |                  | <sup>3</sup> Indicators of hydrophytic vegetation and                    |          |
|                               | lucky Mineral (S1)           |             | Vernal Poo              | ls (F9)     |                   |                  | wetland hydrology must be present,                                       |          |
|                               | leyed Matrix (S4)            |             |                         |             |                   |                  | unless disturbed or problematic.                                         |          |
|                               | ayer (if present):           |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               | ches):                       |             | <u></u>                 |             |                   |                  | Hydric Soil Present? Yes <u>√</u> No                                     |          |
| Remarks:                      |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
| HYDROLO                       | GY                           |             |                         |             |                   |                  |                                                                          |          |
| Wetland Hyd                   | Irology Indicators:          |             |                         |             |                   |                  |                                                                          |          |
| Primary Indic                 | ators (minimum of o          | ne require  | ed; check all that app  | ly)         |                   |                  | Secondary Indicators (2 or more requi                                    | red)     |
| Surface                       | Water (A1)                   |             | Salt Crust              | (B11)       |                   |                  | Water Marks (B1) (Riverine)                                              |          |
| High Wa                       | ter Table (A2)               |             | Biotic Cru              | st (B12)    |                   |                  | Sediment Deposits (B2) (Riverine                                         | <b>)</b> |
| Saturation                    | on (A3)                      |             | Aquatic In              |             | es (B13)          |                  | Drift Deposits (B3) (Riverine)                                           |          |
| Water M                       | arks (B1) (Nonriver          | ine)        | Hydrogen                | Sulfide O   | dor (C1)          |                  | Drainage Patterns (B10)                                                  |          |
| Sedimen                       | t Deposits (B2) (No          | nriverine)  | Oxidized I              | Rhizosphe   | res along         | Living Roo       | ots (C3) Dry-Season Water Table (C2)                                     |          |
| Drift Dep                     | osits (B3) (Nonrive          | rine)       | Presence                | of Reduce   | ed Iron (C        | 4)               | Crayfish Burrows (C8)                                                    |          |
| Surface                       | Soil Cracks (B6)             |             | Recent Iro              | n Reducti   | on in Tille       | ed Soils (C6     | 6) <u>✓</u> Saturation Visible on Aerial Image                           | ry (C9)  |
| ✓ Inundation                  | on Visible on Aerial I       | lmagery (E  | 37) Thin Muck           | Surface     | (C7)              |                  | Shallow Aquitard (D3)                                                    |          |
| Water-St                      | tained Leaves (B9)           |             | Other (Ex               | plain in Re | emarks)           |                  | FAC-Neutral Test (D5)                                                    |          |
| Field Observ                  |                              |             |                         |             |                   |                  |                                                                          |          |
| Surface Water                 |                              |             | No <u>✓</u> Depth (in   |             |                   |                  |                                                                          |          |
| Water Table                   |                              |             | No ✓ Depth (in          |             |                   |                  |                                                                          |          |
| Saturation Pr                 |                              | 'es         | No _ <b>/</b> Depth (in | iches):     |                   | Wetl             | land Hydrology Present? Yes No                                           |          |
| (includes cap<br>Describe Red |                              | gauge, m    | onitoring well, aerial  | photos, pr  | evious in:        | spections).      | if available:                                                            |          |
|                               |                              |             | n, 2020 aerial ima      |             |                   |                  |                                                                          |          |
| Remarks:                      | inagery snows ii             | Taridatio   | ni, 2020 acriai iiii    | agery sin   | JW3 3010          | ar a crorr       |                                                                          |          |
| -                             |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |
|                               |                              |             |                         |             |                   |                  |                                                                          |          |

| Project/Site: BIH-RSA                                        |                                       | City/Coun  | ty: BISHOP   | Sampling Date:11/1/2022                     |                              |                       |    |
|--------------------------------------------------------------|---------------------------------------|------------|--------------|---------------------------------------------|------------------------------|-----------------------|----|
| Applicant/Owner:                                             |                                       |            |              | _ Sampling Poi                              | nt: <u>DP6</u>               |                       |    |
| Investigator(s): N. LAMAS & A. SCHWYTER                      |                                       | Section, T |              |                                             |                              |                       |    |
| Landform (hillslope, terrace, etc.): TERRACE                 |                                       | Local reli | ef (concave, | convex, none): convex                       | (                            | Slope (%): <u>5-7</u> | 7  |
| Subregion (LRR):                                             | Lat: <u>37.</u>                       | 3826       |              | Long: -118.3759                             | D                            | atum:                 |    |
| Soil Map Unit Name: INYO-POLETA COMPLEX                      |                                       |            |              | NWI classif                                 | ication: NA                  |                       |    |
| Are climatic / hydrologic conditions on the site typical for |                                       |            | _            |                                             |                              |                       |    |
| Are Vegetation, Soil, or Hydrology                           |                                       |            |              | "Normal Circumstances"                      |                              | <b>√</b> No           |    |
| Are Vegetation, Soil, or Hydrology                           |                                       |            |              | eeded, explain any answ                     |                              |                       |    |
| SUMMARY OF FINDINGS – Attach site m                          |                                       |            |              |                                             |                              |                       | c. |
| Hydrophytic Vegetation Present? Yes                          | No <b>✓</b>                           | le s       | the Sampled  | A Aron                                      |                              |                       |    |
| Hydric Soil Present? Yes                                     | _ No <u>√</u> _                       |            | thin a Wetla |                                             | No <u>v</u>                  | /                     |    |
|                                                              | _ No <u>√</u> _                       |            | a rrotta     |                                             |                              |                       |    |
| Remarks:                                                     |                                       |            |              |                                             |                              |                       |    |
|                                                              |                                       |            |              |                                             |                              |                       |    |
|                                                              |                                       |            |              |                                             |                              |                       |    |
| VEGETATION – Use scientific names of p                       | olants.                               |            |              |                                             |                              |                       |    |
|                                                              | Absolute                              | Dominar    | nt Indicator | Dominance Test wo                           | ksheet:                      |                       | _  |
| Tree Stratum (Plot size:)                                    | · · · · · · · · · · · · · · · · · · · |            | ? Status     | Number of Dominant                          |                              | _                     |    |
| 1                                                            |                                       |            |              | That Are OBL, FACW                          | , or FAC:                    | 0 (A)                 |    |
| 2                                                            |                                       |            |              | Total Number of Dom                         |                              | 2 (5)                 |    |
| 3<br>4                                                       |                                       |            |              | Species Across All St                       | rata:                        | (B)                   |    |
| T                                                            |                                       | = Total C  |              | Percent of Dominant S<br>That Are OBL, FACW |                              | O (A/B                |    |
| Sapling/Shrub Stratum (Plot size: 6x6 m )                    |                                       | -          |              |                                             |                              | (A/B)                 | ,  |
| 1. Ericameria nauseosa                                       |                                       |            |              | Prevalence Index wo                         |                              |                       |    |
| 2. Salsola tragus                                            |                                       |            |              | Total % Cover of:                           |                              |                       |    |
| 3                                                            |                                       |            |              | OBL species 0                               | x 1 = _                      |                       |    |
| 4.         5.                                                |                                       |            |              | FAC species 0                               |                              |                       |    |
| o                                                            |                                       | = Total C  | Cover        | FACU species 1                              |                              |                       |    |
| Herb Stratum (Plot size:)                                    |                                       | -          |              | UPL species 1                               |                              |                       |    |
| 1                                                            |                                       |            |              | Column Totals:                              | 2 (A)                        | 9 (B)                 |    |
| 2                                                            |                                       |            |              | Prevalence Inde                             | ν _ B/Λ _                    | 15                    |    |
| 3                                                            |                                       |            |              | Hydrophytic Vegetat                         |                              |                       |    |
| 4.       5.                                                  |                                       |            |              | Dominance Test                              |                              |                       |    |
| 6                                                            |                                       |            |              | Prevalence Index                            |                              |                       |    |
| 7.                                                           |                                       |            |              | Morphological Ad                            | aptations <sup>1</sup> (Prov |                       |    |
| 8.                                                           |                                       |            |              |                                             | ks or on a separ             | ,                     |    |
|                                                              |                                       | = Total C  | Cover        | Problematic Hydr                            | ophytic Vegetati             | on (Explain)          |    |
| Woody Vine Stratum (Plot size:)                              |                                       |            |              | <sup>1</sup> Indicators of hydric s         | nil and wetland l            | hydrology must        |    |
| 1                                                            |                                       |            |              | be present, unless dis                      |                              |                       |    |
| 2.                                                           |                                       | = Total C  | `over        | Hydrophytic                                 |                              |                       | _  |
| ov Borro Oromo d'in Horto Overtono 100                       |                                       |            |              | Vegetation                                  | N.                           |                       |    |
|                                                              | Cover of Biotic C                     | rust       | <u>U</u>     | Present? Y                                  | es No                        |                       |    |
| Remarks:                                                     |                                       |            |              |                                             |                              |                       |    |
|                                                              |                                       |            |              |                                             |                              |                       |    |
|                                                              |                                       |            |              |                                             |                              |                       |    |
|                                                              |                                       |            |              |                                             |                              |                       |    |

|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      | Sampling Point: <u>DP6</u>                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|-----------------------------|------------------------------|------------|------------------|------------------------------------------------------|----------------------------------------------------------------|--|--|--|
|                                                                                                                                                                               | iption: (Describe                               | to the dep   | th needed to docu           |                              | dicator    | or confire       | n the absence of                                     | of indicators.)                                                |  |  |  |
| Depth (in all all)                                                                                                                                                            | Matrix                                          | 0/           |                             | ox Features                  | <b>T</b> 1 | 12               | Taustuma                                             | Damania                                                        |  |  |  |
| (inches)                                                                                                                                                                      | Color (moist)                                   | %            | Color (moist)               |                              | Type'      | Loc <sup>2</sup> |                                                      | Remarks                                                        |  |  |  |
| 0-10                                                                                                                                                                          | 2.5Y 4/3                                        | 95           | N/A                         | N/A <u>0</u>                 |            |                  | SL                                                   |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
| Type: C=Cor                                                                                                                                                                   | ncentration, D=Dep                              | oletion, RM: | =Reduced Matrix, C          | S=Covered of                 | or Coate   | d Sand G         | rains. <sup>2</sup> Loca                             | ation: PL=Pore Lining, M=Matrix.                               |  |  |  |
| lydric Soil In                                                                                                                                                                | ndicators: (Applic                              | able to all  | LRRs, unless other          | rwise noted                  | d.)        |                  | Indicators f                                         | for Problematic Hydric Soils <sup>3</sup> :                    |  |  |  |
| Histosol (                                                                                                                                                                    | A1)                                             |              | Sandy Red                   |                              |            |                  | 1 cm M                                               | uck (A9) ( <b>LRR C</b> )                                      |  |  |  |
| Histic Epipedon (A2) Stripped Matrix (S6)                                                                                                                                     |                                                 |              |                             |                              |            |                  | <del></del>                                          | uck (A10) ( <b>LRR B</b> )                                     |  |  |  |
| Black His                                                                                                                                                                     | ` '                                             |              |                             | cky Mineral (                |            |                  |                                                      | ed Vertic (F18)                                                |  |  |  |
|                                                                                                                                                                               | Sulfide (A4)                                    | C)           |                             | yed Matrix (F                | F2)        |                  | Red Parent Material (TF2) Other (Explain in Remarks) |                                                                |  |  |  |
| Stratified Layers (A5) (LRR C) Depleted Matrix (F3)<br>1 cm Muck (A9) (LRR D) Redox Dark Surface (F6)                                                                         |                                                 |              |                             |                              |            | Other (i         | Explain in Nemarks)                                  |                                                                |  |  |  |
|                                                                                                                                                                               | Below Dark Surface                              | e (A11)      |                             | ark Surface                  |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               | k Surface (A12)                                 | ,            |                             | ressions (F8                 | ` '        |                  | <sup>3</sup> Indicators of                           | of hydrophytic vegetation and                                  |  |  |  |
| Sandy Mu                                                                                                                                                                      | ucky Mineral (S1)                               |              | Vernal Poo                  | ols (F9)                     |            |                  | wetland hydrology must be present,                   |                                                                |  |  |  |
|                                                                                                                                                                               | eyed Matrix (S4)                                |              |                             |                              |            |                  | unless dis                                           | sturbed or problematic.                                        |  |  |  |
| Restrictive La                                                                                                                                                                | ayer (if present):                              |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
| Depth (inch                                                                                                                                                                   | nes):                                           |              |                             |                              |            |                  | Hydric Soil I                                        | Present? Yes No                                                |  |  |  |
| Remarks:                                                                                                                                                                      |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
| YDROLOG                                                                                                                                                                       | 2Y                                              |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              |            |                  |                                                      |                                                                |  |  |  |
|                                                                                                                                                                               | rology Indicators                               |              | de ale a de all de at a con | L A                          |            |                  | 0                                                    | dama la dia atama (O ammana manaisa di                         |  |  |  |
| -                                                                                                                                                                             | •                                               | one required | d; check all that app       | •                            |            |                  |                                                      | dary Indicators (2 or more required)                           |  |  |  |
| Surface V                                                                                                                                                                     |                                                 |              | Salt Crust                  |                              |            |                  |                                                      | Water Marks (B1) (Riverine)                                    |  |  |  |
|                                                                                                                                                                               | er Table (A2)                                   |              | Biotic Cru                  |                              | (D40)      |                  |                                                      | Sediment Deposits (B2) (Riverine)                              |  |  |  |
| Saturation (A3) Aquatic Invertebrates (B13)                                                                                                                                   |                                                 |              |                             |                              |            |                  |                                                      | ift Deposits (B3) (Riverine)                                   |  |  |  |
| <ul> <li>Water Marks (B1) (Nonriverine)</li> <li>Sediment Deposits (B2) (Nonriverine)</li> <li>Hydrogen Sulfide Odor (C1)</li> <li>Oxidized Rhizospheres along Liv</li> </ul> |                                                 |              |                             |                              | Linda a Da |                  | ainage Patterns (B10)                                |                                                                |  |  |  |
|                                                                                                                                                                               |                                                 |              |                             |                              | _          | -                |                                                      | y-Season Water Table (C2)                                      |  |  |  |
|                                                                                                                                                                               | osits (B3) ( <b>Nonrive</b><br>Soil Cracks (B6) | nine)        | Presence                    |                              |            |                  | · · · · · · · · · · · · · · · · · · ·                | ayfish Burrows (C8)                                            |  |  |  |
|                                                                                                                                                                               | Soil Cracks (B6)                                | Imagery (P   | Recent Iro                  |                              |            | a Solis (C       |                                                      | aturation Visible on Aerial Imagery (C<br>nallow Aquitard (D3) |  |  |  |
|                                                                                                                                                                               | n Visible on Aerial ained Leaves (B9)           | iiiayeiy (B  |                             | r Surrace (C<br>plain in Rem |            |                  |                                                      | AC-Neutral Test (D5)                                           |  |  |  |
| ield Observ                                                                                                                                                                   |                                                 |              | Outer (EX                   | Piairi III Nelli             | iai No)    |                  |                                                      | TO NOULIAI 1631 (D3)                                           |  |  |  |
|                                                                                                                                                                               |                                                 | /00          | No / Danik (:-              | oboo):                       |            |                  |                                                      |                                                                |  |  |  |
| Surface Water                                                                                                                                                                 |                                                 |              | No ✓ Depth (ir              |                              |            |                  |                                                      |                                                                |  |  |  |
| water Lable E                                                                                                                                                                 | Present?                                        | res          | No 🖌 Depth (ir              | ncnes):                      |            | _ 1              |                                                      |                                                                |  |  |  |
| Saturation Pre                                                                                                                                                                |                                                 |              | No <u>√</u> Depth (ir       |                              |            |                  |                                                      | Present? Yes No/                                               |  |  |  |

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

| Project/Site: BIH-RSA                                        | : BISHOP         | 'INYO                         | Sampling Date | e: <u>11/1/2022</u>                                           |                     |                           |
|--------------------------------------------------------------|------------------|-------------------------------|---------------|---------------------------------------------------------------|---------------------|---------------------------|
| Applicant/Owner:                                             |                  | State: CA Sampling Point: DP7 |               |                                                               |                     |                           |
| Investigator(s): N. LAMAS & A. SCHWYTER                      |                  | Section, To                   |               |                                                               |                     |                           |
| Landform (hillslope, terrace, etc.): RIPARIAN                |                  | Local relief                  | (concave,     | convex, none): conca                                          | ve :                | Slope (%): <u>0-3</u>     |
| Subregion (LRR):                                             | Lat: <u>37</u> . | 3832                          |               | Long: -118.3727                                               | Da                  | atum:                     |
| Soil Map Unit Name: XEROFLUVENTS                             |                  |                               |               | -                                                             |                     |                           |
| Are climatic / hydrologic conditions on the site typical for |                  |                               | _             |                                                               |                     |                           |
| Are Vegetation, Soil, or Hydrology                           |                  |                               |               | "Normal Circumstances                                         |                     | <b>√</b> No               |
| Are Vegetation, Soil, or Hydrology                           |                  |                               |               | eeded, explain any ansv                                       |                     |                           |
| SUMMARY OF FINDINGS – Attach site ma                         |                  |                               |               |                                                               |                     |                           |
| Hydrophytic Vegetation Present? Yes <u>√</u>                 | No               | <u> </u>                      |               |                                                               |                     |                           |
| Hydric Soil Present? Yes   ✓                                 |                  |                               | e Sampled     |                                                               | / No                |                           |
| Wetland Hydrology Present? Yes <u>✓</u>                      |                  | With                          | in a Wetla    | nd? Yes                                                       | / NO                | _                         |
| Remarks:                                                     |                  |                               |               |                                                               |                     |                           |
|                                                              |                  |                               |               |                                                               |                     |                           |
|                                                              |                  |                               |               |                                                               |                     |                           |
| VEGETATION                                                   |                  |                               |               |                                                               |                     |                           |
| VEGETATION – Use scientific names of pla                     |                  |                               |               |                                                               |                     |                           |
| Tree Stratum (Plot size:)                                    |                  | Dominant<br>Species?          |               | Dominance Test wo                                             |                     |                           |
| 1                                                            |                  |                               |               | Number of Dominant<br>That Are OBL, FACW                      |                     | 2 (A)                     |
| 2.                                                           |                  |                               |               |                                                               |                     |                           |
| 3                                                            |                  |                               |               | Total Number of Dom<br>Species Across All St                  |                     | 3 (B)                     |
| 4                                                            |                  |                               |               |                                                               |                     |                           |
| 40440                                                        | 0                | = Total Co                    | ver           | Percent of Dominant<br>That Are OBL, FACW                     |                     | 67 (A/B)                  |
| Sapling/Shrub Stratum (Plot size: 10X10 m )                  |                  | .,                            | 5.4.0V.4.     |                                                               |                     |                           |
| 1. Salix exigua                                              | 6                |                               |               | Prevalence Index we                                           |                     | tiply by                  |
| Rosa woodsii     Populus fremontii                           |                  | Yes                           | FAC           | Total % Cover of OBL species                                  |                     |                           |
| . Fricameria nausaesa                                        |                  |                               | FAC<br>UPL    | FACW species                                                  |                     |                           |
| 5                                                            |                  | 110                           | 012           | FAC species                                                   |                     |                           |
| 0                                                            | 10.1             | = Total Co                    | ver           | FACU species                                                  |                     |                           |
| Herb Stratum (Plot size: 1X1 m                               |                  |                               |               | UPL species                                                   |                     |                           |
| 1. Lepidium latifolium                                       | 0.1              | No                            | FAC           | Column Totals:                                                |                     |                           |
| 2. <u>Baccharis glutinosa</u>                                |                  | No                            | FACW          |                                                               |                     |                           |
| 3. Erigeron canadensis                                       |                  |                               | FACU          |                                                               | ex = B/A =          |                           |
| 4                                                            |                  |                               |               | Hydrophytic Vegeta                                            |                     |                           |
| 5                                                            |                  |                               |               | <ul><li>✓ Dominance Test</li><li>✓ Prevalence Index</li></ul> |                     |                           |
| 6                                                            |                  |                               |               | Morphological Ad                                              |                     | ide supporting            |
| 7                                                            |                  |                               |               |                                                               | rks or on a separ   |                           |
| 8                                                            |                  | = Total Co                    |               | Problematic Hyd                                               | rophytic Vegetation | on <sup>1</sup> (Explain) |
| Woody Vine Stratum (Plot size:)                              | 0.7              | _ = 10tal CC                  | ivei          |                                                               |                     |                           |
| 1                                                            |                  | -                             |               | <sup>1</sup> Indicators of hydric s                           |                     |                           |
| 2                                                            |                  |                               |               | be present, unless dis                                        | sturbed or proble   | matic.                    |
|                                                              |                  | = Total Co                    | ver           | Hydrophytic                                                   |                     |                           |
| % Bare Ground in Herb Stratum99                              | ver of Biotic C  | rust (                        | )             | Vegetation Present?                                           | res ✓ No            |                           |
| Remarks:                                                     |                  |                               |               |                                                               |                     |                           |
|                                                              |                  |                               |               |                                                               |                     |                           |
|                                                              |                  |                               |               |                                                               |                     |                           |
|                                                              |                  |                               |               |                                                               |                     |                           |
| İ                                                            |                  |                               |               |                                                               |                     |                           |

SOIL Sampling Point: DP7

| Profile Desc  | ription: (Describe          | to the dep  | oth needed to docu       | ment the i  | indicator         | or confirn       | n the absence of indicate            | ors.)                                 |
|---------------|-----------------------------|-------------|--------------------------|-------------|-------------------|------------------|--------------------------------------|---------------------------------------|
| Depth         | Matrix                      |             |                          | x Feature   | s1                | . 2              | _                                    |                                       |
| (inches)      | Color (moist)               | %           | Color (moist)            | %           | Type <sup>1</sup> | Loc <sup>2</sup> | <u>Texture</u>                       | Remarks                               |
| 0-12          | 2.5Y 3/2                    | 99          | 7.5YR 4/6                | 5           | <u>C</u>          | <u>M</u>         |                                      |                                       |
| 12+           | 7.5YR 5/2                   | 65          | 7.5YR 4/6                | 5           | <u>C</u>          | M                | <u>S</u>                             |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               | _                           | · ——        | -                        | -           |                   | . ———            |                                      |                                       |
|               |                             |             | -                        |             | · ———             |                  |                                      |                                       |
|               |                             |             | -                        |             |                   |                  |                                      |                                       |
|               |                             |             | =Reduced Matrix, CS      |             |                   | ed Sand G        |                                      | Pore Lining, M=Matrix.                |
| •             |                             | able to all | LRRs, unless othe        |             | ed.)              |                  | Indicators for Proble                | •                                     |
| Histosol      | ,                           |             | Sandy Red                |             |                   |                  | 1 cm Muck (A9) (                     |                                       |
| Histic Ep     | oipedon (A2)                |             | Stripped Ma<br>Loamy Mud | , ,         | J (F1)            |                  | 2 cm Muck (A10)<br>Reduced Vertic (I |                                       |
|               | n Sulfide (A4)              |             | Loamy Gle                |             |                   |                  | Red Parent Mater                     |                                       |
|               | Layers (A5) ( <b>LRR (</b>  | <b>C</b> )  | Depleted M               |             | · (· -)           |                  | Other (Explain in                    |                                       |
|               | ck (A9) ( <b>LRR D</b> )    | - /         | ✓ Redox Dark             | , ,         | (F6)              |                  |                                      | · · · · · · · · · · · · · · · · · · · |
| Depleted      | Below Dark Surfac           | e (A11)     | Depleted D               | ark Surfac  | ce (F7)           |                  |                                      |                                       |
|               | rk Surface (A12)            |             | Redox Dep                |             | F8)               |                  | <sup>3</sup> Indicators of hydroph   | -                                     |
|               | lucky Mineral (S1)          |             | Vernal Poo               | ls (F9)     |                   |                  | wetland hydrology i                  | •                                     |
|               | leyed Matrix (S4)           |             |                          |             |                   |                  | unless disturbed or                  | problematic.                          |
|               | ayer (if present):          |             |                          |             |                   |                  |                                      |                                       |
| Type:         | Ja - a \-                   |             |                          |             |                   |                  | Uhadaia Cail Bassanto                | Vac / Na                              |
|               | ches):                      |             |                          |             |                   |                  | Hydric Soil Present?                 | Yes No                                |
| Remarks:      |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
| HYDROLO       | GY                          |             |                          |             |                   |                  |                                      |                                       |
| Wetland Hyd   | Irology Indicators:         |             |                          |             |                   |                  |                                      |                                       |
| Primary Indic | ators (minimum of o         | ne require  | ed; check all that appl  | y)          |                   |                  | Secondary Indica                     | ators (2 or more required)            |
| Surface '     | Water (A1)                  |             | Salt Crust               | (B11)       |                   |                  | Water Marks                          | s (B1) (Riverine)                     |
| High Wa       | ter Table (A2)              |             | Biotic Crus              | st (B12)    |                   |                  |                                      | eposits (B2) (Riverine)               |
| Saturation    |                             |             | Aquatic In               |             | es (B13)          |                  |                                      | s (B3) (Riverine)                     |
|               | arks (B1) ( <b>Nonriver</b> | ine)        | Hydrogen                 |             |                   |                  | Drainage Pa                          |                                       |
| Sedimen       | t Deposits (B2) (No         | nriverine)  | Oxidized F               | Rhizosphe   | res along         | Living Roo       | ots (C3) Dry-Season                  |                                       |
| ✓ Drift Dep   | osits (B3) (Nonrive         | rine)       | Presence                 |             |                   |                  | Crayfish Bur                         |                                       |
| Surface       | Soil Cracks (B6)            |             | Recent Iro               | n Reducti   | ion in Tille      | ed Soils (C6     | Saturation V                         | isible on Aerial Imagery (C9)         |
| ✓ Inundation  | on Visible on Aerial I      | magery (E   | 37) Thin Muck            | Surface (   | (C7)              |                  | Shallow Aqu                          | itard (D3)                            |
| Water-St      | tained Leaves (B9)          |             | Other (Exp               | olain in Re | emarks)           |                  | FAC-Neutra                           | Test (D5)                             |
| Field Observ  | ations:                     |             |                          |             |                   |                  |                                      |                                       |
| Surface Water | er Present? Y               | es          | No _ ✓ Depth (in         | ches):      |                   |                  |                                      |                                       |
| Water Table   | Present? Y                  | es          | No _ <b>/</b> Depth (in  | ches):      |                   |                  |                                      |                                       |
| Saturation Pr | esent? Y                    | es          | No ✓ Depth (in           | ches):      |                   | Wetl             | and Hydrology Present?               | P Yes <u>√</u> No                     |
| (includes cap | illary fringe)              |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             | onitoring well, aerial   | pnotos, pr  | evious in         | spections),      | if available:                        |                                       |
|               | imagery shows in            | nundatio    | n                        |             |                   |                  |                                      |                                       |
| Remarks:      |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |
|               |                             |             |                          |             |                   |                  |                                      |                                       |

| Project/Site: BIH-RSA                                            | : BISHOP/       | 'INYO                         | _ Sampling Da              | /2022                               |                                  |                  |         |
|------------------------------------------------------------------|-----------------|-------------------------------|----------------------------|-------------------------------------|----------------------------------|------------------|---------|
| Applicant/Owner:                                                 |                 | State: CA Sampling Point: DP8 |                            |                                     |                                  |                  |         |
| Investigator(s): N. LAMAS & A. SCHWYTER                          |                 |                               |                            |                                     |                                  |                  |         |
| Landform (hillslope, terrace, etc.): <u>UPLAND</u>               |                 | Local relie                   | f (concave,                | convex, none): conca                | ve                               | Slope (%):       | 0-3     |
| Subregion (LRR):                                                 | Lat: <u>37.</u> | 3793                          |                            | Long: <u>-118.3787</u>              | [                                | Datum:           |         |
| Soil Map Unit Name: DEHY-DEHY CALCAREOUS COM                     |                 |                               |                            |                                     |                                  |                  |         |
| Are climatic / hydrologic conditions on the site typical for the |                 |                               | _                          |                                     |                                  |                  |         |
| Are Vegetation, Soil, or Hydrology                               |                 |                               |                            | "Normal Circumstances"              |                                  | ✓ No             | 0       |
| Are Vegetation, Soil, or Hydrology                               |                 |                               |                            | eeded, explain any answ             |                                  |                  |         |
| SUMMARY OF FINDINGS – Attach site map                            |                 |                               |                            |                                     |                                  |                  | s, etc. |
| Hydrophytic Vegetation Present? Yes                              | No <b>√</b>     | 10.41                         | Camania                    | I A = = =                           |                                  |                  |         |
| Hydric Soil Present? Yes                                         |                 |                               | ne Sampled<br>nin a Wetlar |                                     | No <u>v</u>                      | /                |         |
| Wetland Hydrology Present? Yes                                   | No <u>√</u>     | Witi                          | iiii a vvetiai             | iu: Tes                             | NO                               | <u></u>          |         |
| Remarks:                                                         |                 |                               |                            |                                     |                                  |                  |         |
|                                                                  |                 |                               |                            |                                     |                                  |                  |         |
|                                                                  |                 |                               |                            |                                     |                                  |                  |         |
| VEGETATION – Use scientific names of pla                         | nts             |                               |                            |                                     |                                  |                  |         |
| VEGETATION GGC GOICHGING Harnes of pla                           | Absolute        | Dominan                       | t Indicator                | Dominance Test wo                   | rksheet.                         |                  |         |
| Tree Stratum (Plot size:)                                        | % Cover         |                               |                            | Number of Dominant                  |                                  |                  |         |
| 1                                                                |                 |                               |                            | That Are OBL, FACW                  |                                  | 1                | (A)     |
| 2                                                                |                 |                               |                            | Total Number of Dom                 |                                  |                  |         |
| 3                                                                |                 |                               |                            | Species Across All St               | rata:                            | 3                | (B)     |
| 4                                                                |                 |                               |                            | Percent of Dominant                 |                                  |                  |         |
| Sapling/Shrub Stratum (Plot size: 6x6 m )                        |                 | = Total Co                    | over                       | That Are OBL, FACW                  | , or FAC:                        | 33               | (A/B)   |
| 1. Ericameria nauseosa                                           | 1.5             | Yes                           | UPL                        | Prevalence Index wo                 | orksheet:                        |                  |         |
| 2. Salix exigua                                                  | _               |                               |                            | Total % Cover of                    | Mu                               | ıltiply by:      | _       |
| 3                                                                |                 |                               |                            |                                     | x 1 = _                          |                  |         |
| 4                                                                |                 |                               |                            | FACW species 1                      |                                  |                  |         |
| 5                                                                |                 |                               | ·                          | FAC species 1                       |                                  |                  |         |
| Herb Stratum (Plot size: 6x6 m )                                 | 6.5             | = Total Co                    | over                       | FACU species 1  UPL species 1       |                                  |                  |         |
| 1. Malvella leprosa                                              | 40              | Yes                           | FACU                       | Column Totals:                      |                                  |                  |         |
| 2. <u>Distichlis spicata</u>                                     |                 | No                            | FAC                        | Coldilli Totals.                    | <u>+</u> (/\)                    | 14               | _ (D)   |
| 3                                                                |                 |                               |                            | Prevalence Inde                     | ex = B/A =                       | 3.5              | _       |
| 4                                                                |                 |                               |                            | Hydrophytic Vegeta                  |                                  |                  |         |
| 5                                                                |                 |                               |                            | Dominance Test                      |                                  |                  |         |
| 6                                                                |                 |                               |                            | Prevalence Index                    |                                  |                  | et a a  |
| 7                                                                |                 |                               |                            | Morphological Ac                    | laptations (Proviks or on a sepa |                  |         |
| 8                                                                |                 |                               |                            | Problematic Hydr                    | ophytic Vegetat                  | ion¹ (Explai     | in)     |
| Woody Vine Stratum (Plot size:)                                  | 40.1            | = Total Co                    | over                       |                                     |                                  |                  |         |
| 1                                                                |                 |                               |                            | <sup>1</sup> Indicators of hydric s |                                  |                  | nust    |
| 2                                                                |                 |                               |                            | be present, unless dis              | sturbed or proble                | ematic.          |         |
|                                                                  |                 | = Total Co                    | over                       | Hydrophytic                         |                                  |                  |         |
| % Bare Ground in Herb Stratum 70 % Cov                           | er of Biotic C  | rust                          | 0                          | Vegetation<br>Present? Y            | es No                            | <u>√</u>         |         |
| Remarks:                                                         |                 |                               | · ·                        |                                     |                                  | _ <del>_</del> _ |         |
|                                                                  |                 |                               |                            |                                     |                                  |                  |         |
|                                                                  |                 |                               |                            |                                     |                                  |                  |         |
|                                                                  |                 |                               |                            |                                     |                                  |                  |         |

| SOIL                                                                                                      | Sampling Point: | DP8 |
|-----------------------------------------------------------------------------------------------------------|-----------------|-----|
|                                                                                                           |                 |     |
| Profile Description: (Describe to the depth peoded to decument the indicator or confirm the absence of in | dicatore )      |     |

| Depth<br>(inches)                                                                                                                                                      | Matrix Color (moist)                                                                                                                                                                                                                             | %                                                     | Color (moist)                                                                                                          | ox Feature<br>%                                                                                                      | Type <sup>1</sup>                                                         | Loc <sup>2</sup>  | Tevture                       | Remarks                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-4                                                                                                                                                                    | 10 YR 3/1                                                                                                                                                                                                                                        |                                                       | N/A                                                                                                                    | 0                                                                                                                    | _ туре                                                                    |                   | CII                           |                                                                                                                                                                                                                                                                  |
| 4-12+                                                                                                                                                                  | 2.5Y 3/1                                                                                                                                                                                                                                         | 99                                                    | 2.5Y 5/1                                                                                                               | 1                                                                                                                    |                                                                           | M                 | SIL                           | •                                                                                                                                                                                                                                                                |
| 4-12+                                                                                                                                                                  | 2.31 3/1                                                                                                                                                                                                                                         | <del></del>                                           | 2.31 3/1                                                                                                               |                                                                                                                      |                                                                           |                   | <u> </u>                      |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   |                               |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                       | 1=Reduced Matrix, C                                                                                                    |                                                                                                                      |                                                                           | ed Sand Gr        |                               | ocation: PL=Pore Lining, M=Matrix.                                                                                                                                                                                                                               |
| _                                                                                                                                                                      |                                                                                                                                                                                                                                                  | cable to al                                           | I LRRs, unless other                                                                                                   |                                                                                                                      | ted.)                                                                     |                   |                               | s for Problematic Hydric Soils <sup>3</sup> :                                                                                                                                                                                                                    |
| Histosol                                                                                                                                                               |                                                                                                                                                                                                                                                  |                                                       | Sandy Red                                                                                                              |                                                                                                                      |                                                                           |                   |                               | Muck (A9) (LRR C)                                                                                                                                                                                                                                                |
|                                                                                                                                                                        | pipedon (A2)<br>istic (A3)                                                                                                                                                                                                                       |                                                       | Stripped M<br>Loamy Mu                                                                                                 |                                                                                                                      | al (E1)                                                                   |                   |                               | Muck (A10) ( <b>LRR B</b> ) uced Vertic (F18)                                                                                                                                                                                                                    |
|                                                                                                                                                                        | en Sulfide (A4)                                                                                                                                                                                                                                  |                                                       | Loamy Gle                                                                                                              |                                                                                                                      |                                                                           |                   | <del></del>                   | Parent Material (TF2)                                                                                                                                                                                                                                            |
|                                                                                                                                                                        | d Layers (A5) ( <b>LRR</b>                                                                                                                                                                                                                       | C)                                                    | Depleted N                                                                                                             | •                                                                                                                    | . ,                                                                       |                   |                               | r (Explain in Remarks)                                                                                                                                                                                                                                           |
| 1 cm Mu<br>Depleted<br>Thick Da                                                                                                                                        | uck (A9) ( <b>LRR D</b> )<br>d Below Dark Surfa<br>ark Surface (A12)<br>Mucky Mineral (S1)                                                                                                                                                       |                                                       | Redox Dar Depleted E Redox Dep                                                                                         | k Surface<br>Dark Surfa<br>Dressions                                                                                 | (F6)<br>ce (F7)                                                           |                   | <sup>3</sup> Indicator        | s of hydrophytic vegetation and d hydrology must be present,                                                                                                                                                                                                     |
|                                                                                                                                                                        | Gleyed Matrix (S4)                                                                                                                                                                                                                               |                                                       | <del></del>                                                                                                            | , ,                                                                                                                  |                                                                           |                   |                               | disturbed or problematic.                                                                                                                                                                                                                                        |
| Restrictive                                                                                                                                                            | Layer (if present):                                                                                                                                                                                                                              |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   |                               |                                                                                                                                                                                                                                                                  |
| Type:                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   |                               |                                                                                                                                                                                                                                                                  |
| Depth (in                                                                                                                                                              | ches):                                                                                                                                                                                                                                           |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   | Hydric So                     | il Present? Yes No <u>√</u>                                                                                                                                                                                                                                      |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   |                               |                                                                                                                                                                                                                                                                  |
| IVDPOLO                                                                                                                                                                | JGV                                                                                                                                                                                                                                              |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   |                               |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                       |                                                                                                                        |                                                                                                                      |                                                                           |                   |                               |                                                                                                                                                                                                                                                                  |
| Wetland Hy                                                                                                                                                             | drology Indicators                                                                                                                                                                                                                               |                                                       | ad chack all that ann                                                                                                  | alv)                                                                                                                 |                                                                           |                   | Sacc                          | ondary Indicators (2 or more required)                                                                                                                                                                                                                           |
| Wetland Hy                                                                                                                                                             | drology Indicators                                                                                                                                                                                                                               |                                                       | ed; check all that app                                                                                                 | •                                                                                                                    |                                                                           |                   |                               | ondary Indicators (2 or more required)                                                                                                                                                                                                                           |
| Wetland Hy Primary Indic Surface                                                                                                                                       | drology Indicators<br>cators (minimum of<br>Water (A1)                                                                                                                                                                                           |                                                       | Salt Crus                                                                                                              | t (B11)                                                                                                              |                                                                           |                   | _                             | Water Marks (B1) (Riverine)                                                                                                                                                                                                                                      |
| Wetland Hy<br>Primary Indio<br>Surface<br>High Wa                                                                                                                      | drology Indicators<br>cators (minimum of<br>Water (A1)<br>ater Table (A2)                                                                                                                                                                        |                                                       | Salt Crus<br>Biotic Cru                                                                                                | t (B11)<br>ust (B12)                                                                                                 | es (B13)                                                                  |                   | _                             | Water Marks (B1) ( <b>Riverine</b> )<br>Sediment Deposits (B2) ( <b>Riverine</b> )                                                                                                                                                                               |
| Wetland Hyd<br>Primary Indid<br>Surface<br>High Wa                                                                                                                     | drology Indicators<br>cators (minimum of<br>Water (A1)<br>ater Table (A2)<br>on (A3)                                                                                                                                                             | one require                                           | Salt Crus<br>Biotic Cru<br>Aquatic Ir                                                                                  | t (B11)<br>ust (B12)<br>nvertebrat                                                                                   | , ,                                                                       |                   |                               | Water Marks (B1) ( <b>Riverine</b> )<br>Sediment Deposits (B2) ( <b>Riverine</b> )<br>Drift Deposits (B3) ( <b>Riverine</b> )                                                                                                                                    |
| Wetland Hy<br>Primary Indio<br>Surface<br>High Wa<br>Saturatio<br>Water M                                                                                              | drology Indicators<br>cators (minimum of<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>flarks (B1) (Nonrive                                                                                                                                     | one require                                           | Salt Crus<br>Biotic Cru<br>Aquatic Ir<br>Hydroger                                                                      | t (B11)<br>ust (B12)<br>nvertebrat<br>n Sulfide C                                                                    | dor (C1)                                                                  | Living Roo        |                               | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10)                                                                                                                  |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer                                                                                                     | drology Indicators<br>cators (minimum of<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>Marks (B1) (Nonrive<br>nt Deposits (B2) (No                                                                                                              | one require                                           | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized                                                                      | t (B11) ust (B12) nvertebrat n Sulfide C                                                                             | dor (C1)<br>eres along                                                    | _                 |                               | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2)                                                                                      |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Dep                                                                                           | drology Indicators<br>cators (minimum of<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>flarks (B1) (Nonrive                                                                                                                                     | one require                                           | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence                                                             | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosphe of Reduc                                                          | odor (C1)<br>eres along<br>ed Iron (C                                     | _                 | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10)                                                                                                                  |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface                                                                                   | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (Nonrive                                                                                                                           | one require<br>erine)<br>ponriverine<br>erine)        | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir                                                   | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosphe of Reduct on Reduct                                               | odor (C1)<br>eres along<br>ed Iron (Co<br>ion in Tille                    | 4)                | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8)                                                                |
| Wetland Hy Primary Indid Surface High Wa Saturati Water M Sedimer Drift Der Surface                                                                                    | drology Indicators<br>cators (minimum of<br>Water (A1)<br>ater Table (A2)<br>on (A3)<br>Marks (B1) (Nonrive<br>nt Deposits (B2) (No<br>posits (B3) (Nonrive<br>Soil Cracks (B6)                                                                  | one require  rine)  priverine  erine)  Imagery (f     | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir                                                   | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosphe of Reduct on Reduct k Surface                                     | odor (C1)<br>eres along<br>ed Iron (C4<br>ion in Tille<br>(C7)            | 4)                | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9                       |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S                                                                  | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) evations:                                      | one require<br>erine)<br>conriverine<br>erine)        | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex                                | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosphe of Reduc on Reduc k Surface                                       | edor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4)<br>d Soils (C6 | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimen Drift Dep Surface Inundati Water-S Field Obser                                                      | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present?                          | one require  prine)  ponriverine  perine)  Imagery (E | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex                                | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph e of Reduc on Reduc k Surface xplain in R                          | edor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4)<br>d Soils (C6 | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Dep Surface Inundati Water-S Field Obser                                                      | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present?                          | one require  prine)  ponriverine  perine)  Imagery (E | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex                                | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph e of Reduc on Reduc k Surface xplain in R                          | edor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4)<br>d Soils (C6 | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S Field Obser Surface Water Water Table Saturation P               | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) on Visible on Aerial stained Leaves (B9) vations: ter Present? Present?                  | one require  rine)  porriverine erine)  Imagery (E    | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex                                | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph of Reduct on Reduct k Surface cplain in R nches): nches):          | odor (C1)<br>eres along<br>ed Iron (C-<br>ion in Tille<br>(C7)<br>emarks) | 4)<br>d Soils (C6 | ots (C3)                      | Water Marks (B1) ( <b>Riverine</b> ) Sediment Deposits (B2) ( <b>Riverine</b> ) Drift Deposits (B3) ( <b>Riverine</b> ) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S Field Obser Surface Water Water Table Saturation P (includes car | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present? Present? pillary fringe) | one require  rine)  porriverine erine)  Imagery (E    | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex                                | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph of Reduct on Reduct k Surface k plain in R nches): nches): nches): | odor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4) d Soils (C6    | ots (C3)<br>S)<br>and Hydrolo | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)      |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S Field Obser Surface Wat Water Table Saturation P (includes cap   | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present? Present? pillary fringe) | one require  rine)  porriverine erine)  Imagery (E    | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex  No ✓ Depth (ir No ✓ Depth (ir | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph of Reduct on Reduct k Surface k plain in R nches): nches): nches): | odor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4) d Soils (C6    | ots (C3)<br>S)<br>and Hydrolo | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)      |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S Field Obser Surface Wat Water Table Saturation P (includes cap   | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present? Present? pillary fringe) | one require  rine)  porriverine erine)  Imagery (E    | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex  No ✓ Depth (ir No ✓ Depth (ir | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph of Reduct on Reduct k Surface k plain in R nches): nches): nches): | odor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4) d Soils (C6    | ots (C3)<br>S)<br>and Hydrolo | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)      |
| Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S Field Obser Surface Wat Water Table Saturation P (includes car              | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present? Present? pillary fringe) | one require  rine)  porriverine erine)  Imagery (E    | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex  No ✓ Depth (ir No ✓ Depth (ir | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph of Reduct on Reduct k Surface k plain in R nches): nches): nches): | odor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4) d Soils (C6    | ots (C3)<br>S)<br>and Hydrolo | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)      |
| Wetland Hy Primary India Surface High Wa Saturatia Water M Sedimer Drift Der Surface Inundati Water-S Field Obser Surface Wat Water Table Saturation P (includes cap   | drology Indicators cators (minimum of Water (A1) ater Table (A2) on (A3) Marks (B1) (Nonrive nt Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) vations: ter Present? Present? pillary fringe) | one require  rine)  porriverine erine)  Imagery (E    | Salt Crus Biotic Cru Aquatic Ir Hydroger Oxidized Presence Recent Ir Thin Muc Other (Ex  No ✓ Depth (ir No ✓ Depth (ir | t (B11) ust (B12) nvertebrat n Sulfide C Rhizosph of Reduct on Reduct k Surface k plain in R nches): nches): nches): | odor (C1) eres along ed Iron (C- ion in Tille (C7) emarks)                | 4) d Soils (C6    | ots (C3)<br>S)<br>and Hydrolo | Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9 Shallow Aquitard (D3) FAC-Neutral Test (D5)      |

| Project/Site: BIH-RSA                                            |                 | City/County                   | : BISHOP     | INYO                                         | Sampling Dat           | e: <u>11/1/2022</u>   |
|------------------------------------------------------------------|-----------------|-------------------------------|--------------|----------------------------------------------|------------------------|-----------------------|
| Applicant/Owner:                                                 |                 | State: CA Sampling Point: DP9 |              |                                              |                        |                       |
| Investigator(s): N. LAMAS & A. SCHWYTER                          |                 | Section, To                   |              |                                              |                        |                       |
| Landform (hillslope, terrace, etc.): RIPARIAN                    |                 | Local relief                  | f (concave,  | convex, none): none                          | ;                      | Slope (%): <u>5-7</u> |
| Subregion (LRR):                                                 | Lat: <u>37.</u> | 3623                          |              | Long: <u>-118.3527</u>                       | D                      | atum:                 |
| Soil Map Unit Name: TORRIFLUVENTS-FLUVAQUENT                     |                 |                               |              | NWI classi                                   | fication: PSSC         |                       |
| Are climatic / hydrologic conditions on the site typical for the |                 |                               | _            |                                              |                        |                       |
| Are Vegetation, Soil, or Hydrology                               | significantly   | disturbed?                    | Are '        | 'Normal Circumstances'                       | present? Yes           | <b>√</b> No           |
| Are Vegetation, Soil, or Hydrology                               |                 |                               |              | eeded, explain any answ                      | vers in Remarks.       | )                     |
| SUMMARY OF FINDINGS – Attach site map                            | showing         | samplin                       | ng point l   | ocations, transect                           | ts, important          | features, etc.        |
| Hydrophytic Vegetation Present? Yes                              |                 | ls th                         | ne Sampleo   | l Area                                       |                        |                       |
| Hydric Soil Present? Yes  Wetland Hydrology Present? Yes         |                 | with                          | nin a Wetlaı | nd? Yes <u>v</u>                             | No                     |                       |
| Wetland Hydrology Present? Yes✓                                  | NO              |                               |              |                                              |                        |                       |
| Tromano.                                                         |                 |                               |              |                                              |                        |                       |
|                                                                  |                 |                               |              |                                              |                        |                       |
|                                                                  |                 |                               |              |                                              |                        |                       |
| VEGETATION – Use scientific names of pla                         | nts.            |                               |              |                                              |                        |                       |
| Total Objections (Phylories                                      | Absolute        |                               | Indicator    | Dominance Test wo                            | rksheet:               |                       |
| Tree Stratum (Plot size:)  1                                     | % Cover         |                               |              | Number of Dominant<br>That Are OBL, FACW     |                        | 2 (A)                 |
| 2.                                                               |                 |                               |              |                                              |                        | (A)                   |
| 3.                                                               |                 |                               |              | Total Number of Dom<br>Species Across All St |                        | 2 (B)                 |
| 4.                                                               |                 |                               |              |                                              |                        | (=)                   |
|                                                                  |                 | = Total Co                    |              | Percent of Dominant That Are OBL, FACW       |                        | 100 (A/B)             |
| Sapling/Shrub Stratum (Plot size: 1X1 m                          | 4-              | .,                            | = 4 0 1 1    |                                              |                        | ( , ,                 |
| Salix exigua     Rosa woodsii                                    | 4 -             |                               | FACW<br>FAC  | Prevalence Index wo                          |                        | tiply by:             |
|                                                                  |                 |                               |              | OBL species                                  |                        |                       |
| 3                                                                |                 |                               |              | FACW species                                 |                        |                       |
| 5.                                                               |                 |                               | ·            | FAC species                                  |                        |                       |
|                                                                  |                 | = Total Co                    | over         | FACU species                                 | x 4 = _                | 0                     |
| Herb Stratum (Plot size: 1X1 m)                                  |                 |                               |              | UPL species                                  | x 5 = _                | 0                     |
| 1. <u>Lepidium latifolium</u>                                    |                 |                               |              | Column Totals:                               | 0 (A) _                | <u> </u>              |
| 2                                                                |                 |                               |              | Prevalence Inde                              | ex = B/A =             | NaN                   |
| 3                                                                |                 |                               |              | Hydrophytic Vegeta                           |                        |                       |
| 4.       5.                                                      |                 |                               |              | ✓ Dominance Test                             |                        |                       |
| 6.                                                               |                 |                               |              | Prevalence Index                             | c is ≤3.0 <sup>1</sup> |                       |
| 7.                                                               |                 |                               |              | Morphological Ac                             | daptations¹ (Prov      | ide supporting        |
| 8                                                                |                 |                               |              |                                              | rks or on a separ      | ,                     |
| W 1 1/2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                    | 0.1             | = Total Co                    | over         | Problematic Hydi                             | ropnytic vegetati      | on (Explain)          |
| Woody Vine Stratum (Plot size:)                                  |                 |                               |              | <sup>1</sup> Indicators of hydric s          | oil and wetland h      | nydrology must        |
| 1<br>2                                                           |                 |                               |              | be present, unless dis                       |                        |                       |
| 2.                                                               |                 | = Total Co                    | over         | Hydrophytic                                  |                        |                       |
| 0/ Para Craund in Harb Stratum 100 0/ Cou                        |                 |                               |              | Vegetation                                   | ′es ✓ No               |                       |
|                                                                  | er of Biotic C  | iustt                         | <u> </u>     | Present? Y                                   | es_ <u>▼</u> No        |                       |
| Remarks:                                                         |                 |                               |              |                                              |                        |                       |
|                                                                  |                 |                               |              |                                              |                        |                       |
|                                                                  |                 |                               |              |                                              |                        |                       |
|                                                                  |                 |                               |              |                                              |                        |                       |

SOIL Sampling Point: DP9

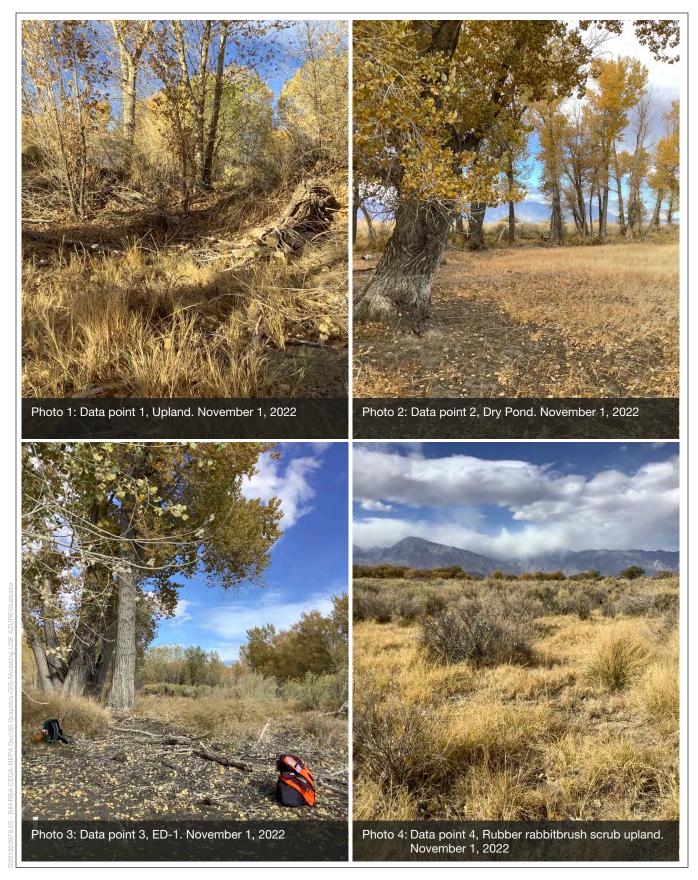
| Profile Desc                  | ription: (Describe                      | to the de   | pth needed to docu       | ment the    | indicator         | or confirn       | n the absence of in | dicators.)                                      |
|-------------------------------|-----------------------------------------|-------------|--------------------------|-------------|-------------------|------------------|---------------------|-------------------------------------------------|
| Depth                         | Matrix                                  |             |                          | x Feature   | S1                |                  | _                   |                                                 |
| (inches)                      | Color (moist)                           | %           | Color (moist)            | %           | Type <sup>1</sup> | Loc <sup>2</sup> | Texture             | Remarks                                         |
| 0-4                           | 10YR 2/1                                | 98          | NA                       | 0           | <u>C</u>          | <u>M</u>         | SL                  |                                                 |
| 4-10                          | 10YR 3/1                                | 99          | NA                       | 0           |                   |                  | SL                  |                                                 |
| 10+                           | 2.5Y 5/2                                | 85          | NA                       | 0           |                   |                  | LS                  |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         | _           |                          |             |                   |                  |                     |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         | _           | -                        | -           | ·                 |                  |                     |                                                 |
| <del>.</del>                  | -                                       |             |                          |             | ·                 | ·                |                     |                                                 |
|                               |                                         |             | l=Reduced Matrix, C      |             |                   | ed Sand G        |                     | : PL=Pore Lining, M=Matrix.                     |
|                               |                                         | cable to al | I LRRs, unless othe      |             | ea.)              |                  |                     | roblematic Hydric Soils <sup>3</sup> :          |
| Histosol                      | (A1)<br>Dipedon (A2)                    |             | Sandy Red<br>Stripped Ma |             |                   |                  |                     | (A9) ( <b>LRR C</b> )<br>(A10) ( <b>LRR B</b> ) |
| Black Hi                      |                                         |             | Stripped Ma              | ` ,         | ıl (F1)           |                  | Reduced Ve          |                                                 |
|                               | en Sulfide (A4)                         |             | Loamy Gle                |             |                   |                  |                     | Material (TF2)                                  |
|                               | d Layers (A5) (LRR                      | C)          | Depleted M               |             | (- (- –)          |                  |                     | ain in Remarks)                                 |
|                               | ıck (A9) ( <b>LRR D</b> )               | ,           | Redox Darl               |             | (F6)              |                  |                     | ,                                               |
|                               | d Below Dark Surfac                     | e (A11)     | Depleted D               | ark Surfac  | ce (F7)           |                  |                     |                                                 |
|                               | ark Surface (A12)                       |             | Redox Dep                |             | F8)               |                  |                     | drophytic vegetation and                        |
|                               | flucky Mineral (S1)                     |             | Vernal Poo               | ls (F9)     |                   |                  |                     | logy must be present,                           |
|                               | Bleyed Matrix (S4)  Layer (if present): |             |                          |             |                   |                  | unless disturb      | ed or problematic.                              |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
| Type:                         | ahaa):                                  |             |                          |             |                   |                  | Hydric Soil Pres    | ont? Voc. / No                                  |
|                               | ches):                                  |             |                          |             |                   |                  | nyunc son Fres      | ent? Yes <u>√</u> No                            |
| Remarks:                      |                                         |             |                          |             |                   |                  |                     |                                                 |
| Surface h                     | orizon sapric n                         | naterial    | , high organic C         | conten      | it                |                  |                     |                                                 |
|                               | •                                       |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
| HYDROLO                       | GY                                      |             |                          |             |                   |                  |                     |                                                 |
| Wetland Hyd                   | drology Indicators:                     | :           |                          |             |                   |                  |                     |                                                 |
| Primary India                 | cators (minimum of o                    | one require | ed; check all that appl  | y)          |                   |                  | Secondary           | Indicators (2 or more required)                 |
| Surface                       | Water (A1)                              |             | Salt Crust               | (B11)       |                   |                  | Water               | Marks (B1) (Riverine)                           |
| High Wa                       | ater Table (A2)                         |             | Biotic Cru               | st (B12)    |                   |                  | Sedime              | ent Deposits (B2) (Riverine)                    |
| Saturation                    | on (A3)                                 |             | Aquatic In               | vertebrate  | es (B13)          |                  | Drift De            | eposits (B3) (Riverine)                         |
| Water M                       | larks (B1) ( <b>Nonrive</b> i           | rine)       | Hydrogen                 | Sulfide O   | dor (C1)          |                  | Draina              | ge Patterns (B10)                               |
| Sedimer                       | nt Deposits (B2) (No                    | nriverine)  | Oxidized I               | Rhizosphe   | res along         | Living Roo       | ots (C3) Dry-Se     | ason Water Table (C2)                           |
| Drift Dep                     | oosits (B3) (Nonrive                    | erine)      | Presence                 | of Reduce   | ed Iron (C        | 4)               | Crayfis             | h Burrows (C8)                                  |
| Surface                       | Soil Cracks (B6)                        |             | Recent Iro               | n Reducti   | ion in Tille      | ed Soils (C6     | 5) <u>√</u> Satura  | tion Visible on Aerial Imagery (C9)             |
| ·                             | on Visible on Aerial                    | Imagery (E  | , <del></del>            |             |                   |                  |                     | v Aquitard (D3)                                 |
| Water-S                       | tained Leaves (B9)                      |             | Other (Ex                | olain in Re | emarks)           |                  | FAC-N               | eutral Test (D5)                                |
| Field Observ                  |                                         |             | ,                        |             |                   |                  |                     |                                                 |
| Surface Water                 |                                         |             | No <u>✓</u> Depth (in    |             |                   |                  |                     |                                                 |
| Water Table                   |                                         |             | No _ V Depth (in         |             |                   |                  |                     | _                                               |
| Saturation Pr                 |                                         | /es         | No <u>✓</u> Depth (in    | ches):      |                   | Wetl             | and Hydrology Pre   | sent? Yes <u>√</u> No                           |
| (includes cap<br>Describe Red |                                         | n gauge, m  | nonitoring well, aerial  | photos, pr  | evious in         | spections).      | if available:       |                                                 |
|                               |                                         |             | _                        |             |                   |                  |                     |                                                 |
| Remarks:                      | iiiiagei y Silows I                     | nunuatio    | on, 2020 aerial ima      | agery Sile  | JWS Sall          | ii atiOII        |                     |                                                 |
| . tomanto.                    |                                         |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |
|                               |                                         |             |                          |             |                   |                  |                     |                                                 |

#### WETLAND DETERMINATION DATA FORM – Arid West Region

| Project/Site: BIH-RSA                                        |                   | City/County  | : BISHOP     | INYO                                        | _ Sampling Date                              | 11/1/2022            |
|--------------------------------------------------------------|-------------------|--------------|--------------|---------------------------------------------|----------------------------------------------|----------------------|
| Applicant/Owner:                                             |                   |              |              | State: CA                                   | _ Sampling Poin                              | t: <u>DP10</u>       |
| Investigator(s): N. LAMAS & A. SCHWYTER                      |                   | Section, To  | wnship, Ra   | nge:                                        |                                              |                      |
| Landform (hillslope, terrace, etc.): <u>UPLAND</u>           |                   | Local relie  | f (concave,  | convex, none): convex                       | <u>(                                    </u> | lope (%): <u>3-5</u> |
| Subregion (LRR):                                             | Lat: <u>37.</u>   | 3624         |              | Long: <u>-118.3526</u>                      | Da                                           | tum:                 |
| Soil Map Unit Name: INYO-POLETA COMPLEX                      |                   |              |              | NWI classifi                                | cation: NA                                   |                      |
| Are climatic / hydrologic conditions on the site typical for | this time of year | ar? Yes      | ✓ No_        | (If no, explain in                          | Remarks.)                                    |                      |
| Are Vegetation, Soil, or Hydrology                           | _ significantly   | disturbed?   | Are '        | 'Normal Circumstances"                      | present? Yes _                               | <b>√</b> No          |
| Are Vegetation, Soil, or Hydrology                           | _ naturally pro   | blematic?    | (If ne       | eeded, explain any answ                     | ers in Remarks.)                             |                      |
| SUMMARY OF FINDINGS – Attach site ma                         | p showing         | samplin      | ng point l   | ocations, transect                          | s, important                                 | features, etc.       |
| Hydrophytic Vegetation Present? Yes                          | No <u> </u>       | ls th        | ne Sampled   | l Area                                      |                                              |                      |
| Hydric Soil Present? Yes                                     |                   |              | nin a Wetlar |                                             | No <u>√</u>                                  |                      |
| Wetland Hydrology Present? Yes                               | No <u>√</u>       |              |              |                                             |                                              | <u> </u>             |
| Remarks:                                                     |                   |              |              |                                             |                                              |                      |
|                                                              |                   |              |              |                                             |                                              |                      |
|                                                              |                   |              |              |                                             |                                              |                      |
| VEGETATION – Use scientific names of pl                      | ants.             |              |              |                                             |                                              |                      |
|                                                              | Absolute          | Dominant     | Indicator    | Dominance Test wor                          | ksheet:                                      |                      |
| Tree Stratum (Plot size:)                                    | % Cover           |              |              | Number of Dominant S                        |                                              | •                    |
| 1                                                            |                   |              |              | That Are OBL, FACW                          | , or FAC:                                    | <u>0</u> (A)         |
| 2                                                            |                   |              |              | Total Number of Domi                        |                                              | <b>3</b> (D)         |
| 3<br>4                                                       |                   |              |              | Species Across All Str                      | ata:                                         | 2 (B)                |
| 7.                                                           |                   | = Total Co   |              | Percent of Dominant S<br>That Are OBL, FACW |                                              | Ο (Δ/P)              |
| Sapling/Shrub Stratum (Plot size: 6x6 m )                    |                   | -            |              | That Are OBL, FACW,                         | , or FAC                                     | <u> </u>             |
| 1. Ericameria nauseosa                                       |                   |              |              | Prevalence Index wo                         |                                              |                      |
| 2. Atriplex polycarpa                                        |                   |              |              | Total % Cover of:                           |                                              |                      |
| 3. Salix exigua                                              |                   |              |              | OBL species 0                               |                                              |                      |
| 4                                                            |                   |              | ·            | FACW species 1 FAC species 0                |                                              |                      |
| 5                                                            |                   | = Total Co   |              | FACU species 1                              |                                              |                      |
| Herb Stratum (Plot size:)                                    |                   | _ = 10ta1 0t | ovei         | UPL species 1                               |                                              |                      |
| 1                                                            |                   |              |              | Column Totals:                              |                                              | 11 (B)               |
| 2                                                            |                   |              |              |                                             |                                              |                      |
| 3                                                            |                   |              |              |                                             | x = B/A = 3.66                               | 666666t <u>t</u>     |
| 4                                                            |                   |              |              | Hydrophytic Vegetat                         |                                              |                      |
| 5                                                            |                   |              |              | Dominance Test i Prevalence Index           |                                              |                      |
| 6                                                            |                   |              |              | Morphological Ad                            |                                              | de supporting        |
| 7                                                            |                   |              | ·            |                                             | ks or on a separa                            |                      |
| 8                                                            |                   | = Total Co   |              | Problematic Hydro                           | ophytic Vegetatio                            | n¹ (Explain)         |
| Woody Vine Stratum (Plot size:)                              |                   | _= 10ta1 CC  | ovei         |                                             |                                              |                      |
| 1                                                            |                   |              |              | <sup>1</sup> Indicators of hydric so        |                                              |                      |
| 2                                                            |                   |              |              | be present, unless dis                      | turbed or problem                            | nauc.                |
|                                                              | 0                 | = Total Co   | over         | Hydrophytic<br>Vegetation                   |                                              |                      |
| % Bare Ground in Herb Stratum 100 % Co                       | over of Biotic C  | rust(        | 0            |                                             | es No                                        | ✓                    |
| Remarks:                                                     |                   |              |              |                                             |                                              |                      |
|                                                              |                   |              |              |                                             |                                              |                      |
|                                                              |                   |              |              |                                             |                                              |                      |
|                                                              |                   |              |              |                                             |                                              |                      |

US Army Corps of Engineers Arid West – Version 2.0

SOIL Sampling Point: DP10


Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Depth        | Matrix                     |             |                                             | x Feature  |                   | . 2              |                         |                                                                                |
|--------------|----------------------------|-------------|---------------------------------------------|------------|-------------------|------------------|-------------------------|--------------------------------------------------------------------------------|
| (inches)     | Color (moist)              | %           | Color (moist)                               | %          | Type <sup>1</sup> | Loc <sup>2</sup> | <u>Texture</u>          | Remarks                                                                        |
| 0-12         | 10YR 4/2                   | 90          | NA                                          | 0          |                   |                  | LS                      |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             | -          |                   |                  |                         |                                                                                |
|              | -                          |             |                                             | -          |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            | -                 |                  |                         |                                                                                |
| 1- 0.0       |                            |             |                                             |            |                   |                  | . 21                    |                                                                                |
|              |                            |             | =Reduced Matrix, CS<br>I LRRs, unless other |            |                   | ed Sand G        |                         | cation: PL=Pore Lining, M=Matrix.  for Problematic Hydric Soils <sup>3</sup> : |
| _            |                            | cable to al |                                             |            | ieu.)             |                  |                         | •                                                                              |
| Histosol     | pipedon (A2)               |             | Sandy Redo<br>Stripped Ma                   |            |                   |                  |                         | Muck (A9) ( <b>LRR C</b> )<br>Muck (A10) ( <b>LRR B</b> )                      |
|              | istic (A3)                 |             | Stripped Ma                                 |            | al (F1)           |                  |                         | ed Vertic (F18)                                                                |
|              | en Sulfide (A4)            |             | Loamy Gley                                  | -          | . ,               |                  |                         | arent Material (TF2)                                                           |
|              | d Layers (A5) ( <b>LRR</b> | C)          | Depleted Ma                                 |            |                   |                  | ·                       | (Explain in Remarks)                                                           |
|              | uck (A9) ( <b>LRR D</b> )  | - /         | Redox Dark                                  |            |                   |                  |                         |                                                                                |
|              | d Below Dark Surfa         | ce (A11)    | Depleted Da                                 |            |                   |                  |                         |                                                                                |
| Thick Da     | ark Surface (A12)          |             | Redox Depr                                  | essions (  | (F8)              |                  | <sup>3</sup> Indicators | of hydrophytic vegetation and                                                  |
|              | Mucky Mineral (S1)         |             | Vernal Pools                                | s (F9)     |                   |                  | wetland                 | hydrology must be present,                                                     |
|              | Gleyed Matrix (S4)         |             |                                             |            |                   |                  | unless d                | listurbed or problematic.                                                      |
| Restrictive  | Layer (if present):        |             |                                             |            |                   |                  |                         |                                                                                |
| Type:        |                            |             |                                             |            |                   |                  |                         |                                                                                |
| Depth (in    | ches):                     |             |                                             |            |                   |                  | Hydric Soil             | Present? Yes No                                                                |
| Remarks:     |                            |             |                                             |            |                   |                  | •                       |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
| HYDROLO      | ic.V                       |             |                                             |            |                   |                  |                         |                                                                                |
|              | drology Indicators         |             |                                             |            |                   |                  |                         |                                                                                |
| -            | -                          |             |                                             | ,          |                   |                  |                         |                                                                                |
| -            | -                          | one require | ed; check all that apply                    |            |                   |                  |                         | ndary Indicators (2 or more required)                                          |
| _            | Water (A1)                 |             | Salt Crust                                  |            |                   |                  |                         | Vater Marks (B1) (Riverine)                                                    |
|              | ater Table (A2)            |             | Biotic Crus                                 | . ,        |                   |                  |                         | Sediment Deposits (B2) (Riverine)                                              |
| Saturati     |                            |             | Aquatic Inv                                 |            |                   |                  |                         | Orift Deposits (B3) (Riverine)                                                 |
|              | farks (B1) (Nonrive        |             | Hydrogen                                    |            |                   |                  |                         | Prainage Patterns (B10)                                                        |
|              | nt Deposits (B2) (No       |             |                                             |            | _                 | -                |                         | Ory-Season Water Table (C2)                                                    |
|              | posits (B3) (Nonrive       | erine)      | Presence of                                 |            |                   |                  |                         | Crayfish Burrows (C8)                                                          |
|              | Soil Cracks (B6)           |             | Recent Iro                                  |            |                   | d Soils (C6      |                         | Saturation Visible on Aerial Imagery (C9)                                      |
|              | on Visible on Aerial       |             |                                             |            |                   |                  |                         | Shallow Aquitard (D3)                                                          |
|              | Stained Leaves (B9)        |             | Other (Exp                                  | lain in Re | emarks)           |                  | F                       | AC-Neutral Test (D5)                                                           |
| Field Obser  |                            |             | ,                                           |            |                   |                  |                         |                                                                                |
| Surface Wat  |                            |             | No <u>√</u> Depth (inc                      |            |                   |                  |                         |                                                                                |
| Water Table  | Present?                   | Yes         | No <u>✓</u> Depth (inc                      | ches):     |                   | _                |                         |                                                                                |
| Saturation P |                            | Yes         | No <u>✓</u> Depth (inc                      | ches):     |                   | Wetl             | and Hydrolog            | y Present? Yes No <u>√</u>                                                     |
|              | pillary fringe)            |             |                                             |            |                   |                  | if available:           |                                                                                |
| Describe Re  | corded Data (strear        | n gauge, m  | onitoring well, aerial p                    | pnotos, pi | revious ins       | spections),      | ir available:           |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
| Remarks:     |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |
|              |                            |             |                                             |            |                   |                  |                         |                                                                                |

# C-4 ORM Aquatic Resources Spreadsheet

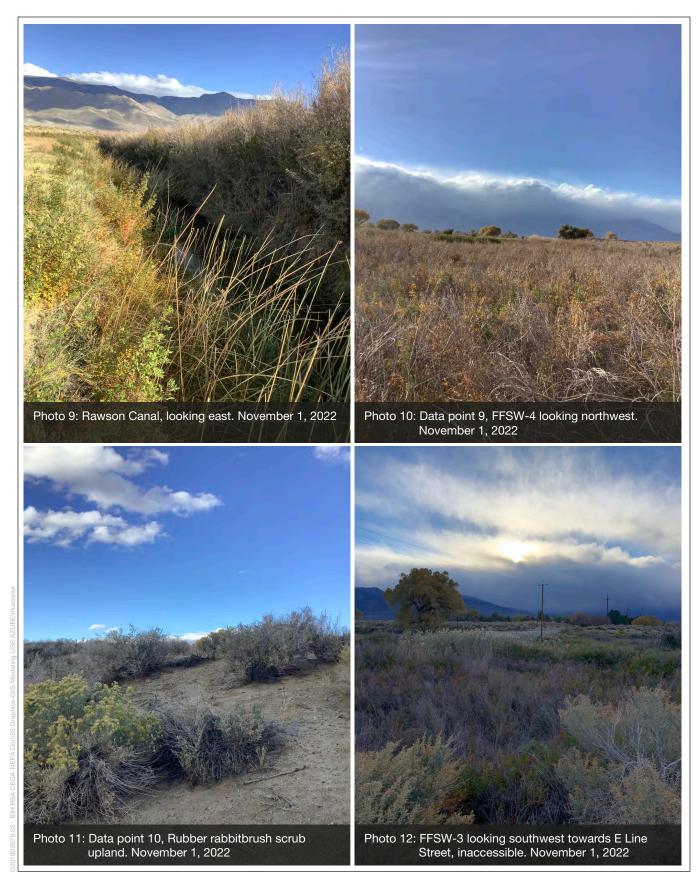
| Waters_Name  | State      | Cowardin_Code | HGM_Code | Meas_Type | Amount | Units | Waters_Type | Latitude    | Longitude     | Local_Waterway |
|--------------|------------|---------------|----------|-----------|--------|-------|-------------|-------------|---------------|----------------|
| ED-1         | CALIFORNIA | R4            | RIVERINE | Area      | 0.1448 | ACRE  | ISOLATE     | 37.38154    | -118.37833    |                |
| FEW-1        | CALIFORNIA | PEM           | DEPRESS  | Area      | 1.2712 | ACRE  | RPWWD       | 37.38335    | -118.37288    |                |
| FFSW-1       | CALIFORNIA | PSS           | DEPRESS  | Area      | 2.7866 | ACRE  | RPWWD       | 37.38300    | -118.37580    |                |
| FFSW-2       | CALIFORNIA | PSS           | DEPRESS  | Area      | 0.1581 | ACRE  | RPWWD       | 37.38323    | -118.37450    |                |
| FFSW-3       | CALIFORNIA | PSS           | DEPRESS  | Area      | 1.797  | ACRE  | RPWWD       | 37.36231    | -118.35447    |                |
| FFSW-4       | CALIFORNIA | PSS           | DEPRESS  | Area      | 2.8211 | ACRE  | ISOLATE     | 37.36279900 | -118.35626900 |                |
| Rawson Canal | CALIFORNIA | R4SB          | RIVERINE | Linear    | 950    | FOOT  | RPW         | 37.36248300 | -118.35452000 |                |

# C-5 Representative Site Photographs



SOURCE: ESA, 2022

**ESA** 


BIH RSA CEQA-NEPA Document



SOURCE: ESA, 2022

**ESA** 

BIH RSA CEQA-NEPA Document



SOURCE: ESA, 2022

BIH RSA CEQA-NEPA Document



# Appendix D Tribal Consultation





#### INYO COUNTY BOARD OF SUPERVISORS

TRINA ORRILL • JEFF GRIFFITHS • SCOTT MARCELLIN • JENNIFER ROESER • MATT KINGSLEY

NATE GREENBERG

DARCY ELLIS
ASST. CLERK OF THE BOARD



January 13, 2023

George Gholson Timbisha Shoshone Tribe 621 W. Line Street Suite 109 Bishop, CA 93514

**RE:** Assembly Bill 52 Consultation (Per Public Resources Code 21080.3.1)

Dear Sir or Madam:

Bishop Airport (BIH or the Airport) is a public-use airport located in Inyo County (County) in the Eastern Sierra region of California. The Airport is owned and operated by Inyo County, the airport sponsor, and is situated on land leased from the City of Los Angeles Department of Water and Power (LADWP). BIH is located approximately 1.5 miles east of the city of Bishop and approximately 45 miles southeast of the town of Mammoth Lakes. The location of the Airport is shown on **Attachment** 1.

#### Background

A Runway Safety Area (RSA) is a rectangular area surrounding a runway that is designed to enhance safety for aircraft that undershoot, overrun, or otherwise leave the paved runway surface. Per FAA regulations, an airport must keep the RSA cleared, graded, drained, and accessible by firefighting and rescue equipment. The FAA defines RSA standards and dimensions based on the type of aircraft using the airport. Following these guidelines, the standard RSA for Runway 12-30 would be 500 feet wide, centered on the runway centerline, and extend 1,000 feet beyond the runway end. The RSA surface should have no more than a three percent slope for 200 feet off the runway end and a maximum slope of five percent thereafter. The FAA regularly re-evaluates standard and non-standard RSAs at airports nationwide and requires airports to make incremental improvements where necessary. In situations where there is insufficient land available in which to develop a standard RSA, or if existing obstacles make a standard RSA impossible, the FAA works with airports to find alternative solutions. Bishop Airport is currently maintaining a non-standard RSA for Runway 12-30. The Proposed Project would bring the RSA into compliance with FAA regulations.

#### **Description of the Proposed Project**

To satisfy FAA regulations for runways serving the type of aircraft currently operating on Runway 12-30, the Proposed Project would correct the nonstandard length, width, and grading for the RSA. The RSA beyond the Runway 12 end would be brought into compliance with FAA standards by cutting, filling, grading, and compacting approximately 7.8 acres of land within the RSA beyond the Runway 12 end. This area is beyond the current Airport perimeter fence on land outside the current leasehold with the Los Angeles Department of Water and Power (LADWP), but within the Airport's easement. An existing LADWP unpaved patrol road would be relocated outside the runway's Object Free Area

(OFA), which is the same length as the RSA with a width of 800 feet. The portion of relocated road would be approximately 15 feet wide and 1/4 mile long. In addition, approximately 1,635 linear feet (LF) of existing fence would be removed and approximately 2,175 LF of new perimeter fence would be installed beyond the OFA boundary.

The RSA beyond the Runway 30 end would be brought into compliance with FAA standards by clearing, cutting, filling, and grading approximately 6.5 acres. This area is outside the current leasehold with LADWP, but within the Airport's easement. In addition, approximately 2,000 LF of fence would be removed and approximately 3,125 LF of new fence would be installed outside the OFA.

The necessary fill material for the RSAs will generally be taken from the cut material in the RSAs. In the event more material is required, a borrow area has been identified immediately adjacent to the RSA beyond the Runway 12 end. The RSA alongside the runway are generally in compliance with FAA regulations but would be graded to ensure an adequate, flat surface throughout. The Proposed Project is depicted on **Attachment 2, 3** and **4**.

#### **Need for the Proposed Project**

The compliant portion of the RSA beyond the Runway 12 end has been determined to be 715 feet short of the required 1,000 feet. Similarly, the RSA beyond the Runway 30 end has been determined to be 360 feet short of the required 1,000 feet. The Proposed Project would correct these deficiencies and bring the RSAs into compliance with FAA regulations.

As specified by Public Resources Code 21080.3.1 the County is hereby inviting local Tribes to consultation prior to the release of the CEQA environmental document. Also pursuant to Public Resources Code 21080.3.1, the Tribes must request consultation within 30-days of receipt of this correspondence.

If you wish to initiate the consultation process or would like more information, please contact:

Cathreen Richards, Planning Director PO Drawer L, Independence, CA 93526 760-878-0263 crichards@inyocounty.us

Singer

Jen Roeser, Chairperson Inyo County Board of Supervisors



SOURCE: Esri; Inyo County Department of Public Works; ESA, 2020.

Runway Safety Area Improvement Project at Bishop Airport Draft EA







SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway Safety Area Improvement Project at Bishop Airport Draft EA



SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway Safety Area Improvement Project at Bishop Airport Draft EA



SOURCE: ESA, 2022; Maxar, 2020; Inyo County, 2022.

Runway Safety Area Improvement Project at Bishop Airport Draft EA

Figure 4
Proposed Project
Runway 30 End



# Appendix E Mitigation Monitoring and Reporting Program





#### **APPENDIX E**

# Mitigation Monitoring and Reporting Program

#### Introduction

The purpose of this Mitigation Monitoring and Reporting Program (MMRP) is to describe the roles and responsibilities in the mitigation monitoring process for the proposed project, pursuant to CEQA Guidelines §15097. A reporting and monitoring program ensures that measures adopted to mitigate or avoid significant environmental impacts are implemented. It is a working guide to facilitate not only the implementation of mitigation measures, but also the monitoring, compliance, and reporting activities.

The measures identified in this MMRP was developed as part of the IS/MND prepared for the proposed project and is defined by CEQA as a measure which minimizes impacts by limiting the degree or magnitude of the action and its implementation.

Monitoring and documenting the implementation of mitigation measures will be coordinated by the County (CEQA Lead Agency). **Table E-1** identifies the mitigation measure, the monitoring action for the mitigation measure, the responsible party for the monitoring action, and timing of the monitoring action. The County will monitor and report on all mitigation activities. As such, the responsibilities for implementation shall be assigned to Inyo County.

## TABLE E-1 MITIGATION MONITORING AND REPORTING PROGRAM

| Impact Topic            | Mitigation Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Implementation<br>Responsibility                      | Monitoring/Reporting<br>Responsibility                                | Timing                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|
| Air Quality             | MM-AIR-1: Equipment Emission Standards. The construction contractor shall utilize off-road diesel-powered construction equipment that meet or exceed the CARB and U.S. Environmental Protection Agency (USEPA) Tier 4 Interim off-road emissions standards for all equipment rated at 50 horsepower (hp) or greater and USEPA Tier 4 Final off-road emissions standards for all equipment rated at 400 hp or greater during Project construction. Such equipment shall be outfitted with Best Available Control Technology (BACT) devices including a CARB-certified Level 3 Diesel Particulate Filter or equivalent. A copy of each unit's certified tier specification or model year specification and CARB or GBUAPCD operating permit (if applicable) shall be available upon request at the time of mobilization of each applicable unit of equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inyo County Department<br>of Public Works;<br>GBUAPCD | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or<br>vegetation<br>disturbing activities |
| Biological<br>Resources | <b>MM-BIO-1: Burrowing Owl.</b> Prior to any ground disturbance, a habitat assessment and burrow survey will be performed within the project area plus a surrounding 500-foot buffer. If no suitable burrows are detected, then no further surveys will be required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inyo County Department of Public Works                | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or vegetation disturbing activities       |
| Biological<br>Resources | MM-BIO-2: Burrowing Owl Breeding Season Surveys. If suitable burrows are detected, then four breeding season surveys of areas found to have potential for burrowing owl occupation must be conducted in accordance with the Staff Report on Burrowing Owl Mitigation (CDFG 2012 or most recent version). Specifically, these reports suggest at least one site visit between February 15 and April 15 and a minimum of three surveys, at least three weeks apart, between the peak breeding season April 15 and July 15, with at least one visit after June 15. The surveys shall include 100 percent coverage of the Project site and include a minimum 500-foot buffer in adjacent habitat. A report summarizing the survey including all requirements for survey reports (page 30 of the 2012 Staff Report) shall be submitted to CDFW for review. If no burrowing owl, active burrowing owl burrows, or sign (molted feathers, cast pellets, prey remains, eggshell fragments, decoration, or excrement) thereof are found, no further action is necessary.                                                                                                                                                                                                                                                                                                                                                                                                                   | Inyo County Department of Public Works                | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or vegetation disturbing activities       |
| Biological<br>Resources | MM-BIO-3: Burrowing Owl Habitat Avoidance. If burrowing owl, active burrowing owl burrows, or sign thereof are found the qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be reviewed and approved by CDFW for review and approval at least 30 days prior to initiation of ground disturbing activities. The Burrowing Owl Plan shall describe proposed avoidance, minimization, and monitoring actions. The Burrowing Owl Plan shall include the number and location of occupied burrow sites, acres of burrowing owl habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed. Project activities shall not occur within 1000 feet of an active burrow until CDFW approves the Burrowing Owl Plan. If the Project cannot ensure burrowing owls and their burrows are fully avoided, consultation with CDFW is warranted to discuss how to implement the Project and avoid take; or if avoidance is not feasible, to potentially acquire an ITP prior to any ground disturbing activities, pursuant Fish and Game Code section 2081 subdivision (b). Full mitigation often involves the permanent conservation of quality habitat benefiting the species through a conservation easement, along with habitat enhancement and ongoing management funded appropriately. Passive relocation, performed according to the Staff | Inyo County Department of Public Works                | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or<br>vegetation<br>disturbing activities |

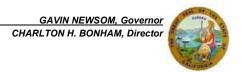
| Impact Topic            | Mitigation Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation<br>Responsibility       | Monitoring/Reporting<br>Responsibility                                | Timing                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|
|                         | Report on Burrowing Owl Mitigation (CDGW, 2012) may be authorized through the incidental take permit as a minimization measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                       |                                                           |
| Biological<br>Resources | MM-BIO-4: Nesting Birds. The Project proponent expects that the proposed Project construction will commence in late 2024 and last approximately three months. Regardless of the time of year, nesting bird surveys shall be performed by a qualified avian biologist no more than three days prior to vegetation removal or ground-disturbing activities. Pre-construction surveys shall focus on both direct and indirect evidence of nesting, including nest locations and nesting behavior. The qualified avian biologist will make every effort to avoid potential nest predation as a result of survey and monitoring efforts. If active nests are found during the pre-construction nesting bird surveys, a qualified biologist shall establish an appropriate nest buffer to be delineated and flagged. Nest buffers are species specific and shall be at least 300 feet for passerines and 500 feet for raptors. A smaller or larger buffer may be determined by the qualified biologist familiar with the nesting phenology of the nesting species and based on nest and buffer monitoring results. Construction activities may not occur inside the established buffers, which shall remain on site until a qualified biologist determines the young have fledged or the nest is no longer active. Active nests and adequacy of the established buffer distance shall be monitored daily by the qualified biologist until the qualified biologist has determined the young have fledged or the Project has been completed. The qualified biologist has the authority to stop work if nesting pairs exhibit signs of disturbance. | Inyo County Department of Public Works | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or<br>vegetation<br>disturbing activities |
| Biological<br>Resources | <b>MM-BIO-5: Owens Valley Vole Habitat Assessment.</b> Prior to any ground disturbance, a habitat assessment for Owens Valley Vole will be performed within the area traversed by the relocated patrol road, the only suitable habitat within the project area that would be impacted by Proposed Project implementation. If no active burrows or signs thereof (burrows, runways, scat) are found in this area, no further action is necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inyo County Department of Public Works | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or vegetation disturbing activities       |
| Biological<br>Resources | MM-BIO-6: Owens Valley Vole Habitat Avoidance. If sign of current or past use by Owens Valley vole (burrows, runways, scat) is found within the construction area, a qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be reviewed and approved by CDFW. The Owens Valley vole Plan shall describe proposed avoidance, minimization, and monitoring actions. The Owens Valley vole Plan shall also include the number and location of occupied burrow sites, acres of Owens Valley vole habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inyo County Department of Public Works | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or<br>vegetation<br>disturbing activities |
| Biological<br>Resources | MM-BIO-7: Riparian Habitat Notification. If, during the design phase of the Proposed Project, potential adverse impacts to riparian habitat associated with North Fork Bishop Creek are determined to be unavoidable, Inyo County will notify CDFW according to the California Fish and Game Code Section 1602. The notification shall include a quantification of riparian area impacted by the Proposed Project and description of post-Project restoration of impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inyo County Department of Public Works | Inyo County Director of<br>Public Works or the<br>Director's designee | Prior to ground or vegetation disturbing activities       |

# Appendix F Comments and Responses





### **APPENDIX F**


# Comments and Responses

Appendix F includes the comment letter received during the agency/public review period for the Initial Study/Mitigated Negative Declaration (from October 22, 2024 to November 20, 2024).

A summary of the comment letter received is provided in Table F-1. The comment letter and Inyo County's responses are provided on subsequent pages.

## TABLE F-1 DRAFT IS/MND COMMENTS

| Item | Agency/Commenter                                 | Dated             | Received by Inyo<br>County | Comment Summary                                                                                                                                                                              |
|------|--------------------------------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | California<br>Department of Fish<br>and Wildlife | November 19, 2024 | November 19, 2024          | Comments and suggestions regarding impacts to burrowing owls, nesting birds, sensitive plants, Owens Valley voles, and potential for lake and streambed alteration within CDFW jurisdiction. |



November 19, 2024 sent via email

Ashley Helms
Deputy Public Works Director
Inyo County Department of Public Works
703 Airport Road
Bishop, CA 93514
ahelms@inyocounty.us

Dear Ms. Helms:

Runway 12/30 Safety Area Improvements at Bishop Airport (Project) MITIGATED NEGATIVE DECLARATION (MND) SCH# 2024100984

The California Department of Fish and Wildlife (CDFW) received a recirculated Notice of Intent to Adopt an MND from Inyo County for the Project pursuant the California Environmental Quality Act (CEQA) and CEQA Guidelines.<sup>1</sup>

Thank you for responding to CDFW's previous request by providing:

- a) A State Clearinghouse Number for this project,
- b) A map that combines the Natural Communities and Land Cover Types and proposed Project features of Figures 3 and 4, respectively; and
- c) An update to Table 1 in the Biological Resources Technical Report to include the acreage of each vegetation community/habitat type within the project footprint, as shown in Section 3.2 Vegetation Communities and Wildlife Habitats.

CDFW is taking this opportunity to revise comments and recommendations provided in a letter dated October 7, 2024, in response to the previously circulated Initial Study/Mitigated Negative Declaration (IS/MND), regarding those activities involved in the Project that may affect California fish and wildlife. We appreciate the opportunity to provide comments regarding those aspects of the Project that CDFW, by law, may be required to carry out or approve through the exercise of its own regulatory authority under the Fish and Game Code.

#### **CDFW ROLE**

CDFW is California's **Trustee Agency** for fish and wildlife resources and holds those resources in trust by statute for all the people of the State. (Fish & G. Code, §§ 711.7, subd. (a) & 1802; Pub. Resources Code, § 21070; CEQA Guidelines § 15386, subd. (a).) CDFW, in its trustee capacity, has jurisdiction over the conservation, protection, and management of fish, wildlife, native plants, and habitat necessary for biologically sustainable populations of those species. (*Id.*, § 1802.) Similarly, for purposes of CEQA, CDFW is charged by law to provide, as available, biological expertise during public agency environmental review efforts, focusing specifically on projects and related activities that have the potential to adversely affect fish and wildlife resources.

CDFW is also submitting comments as a **Responsible Agency** under CEQA. (Pub. Resources Code, § 21069; CEQA Guidelines, § 15381.) CDFW expects that it may need to exercise regulatory authority as provided by the Fish and Game Code. As proposed, for example, the Project may be subject to CDFW's lake and streambed alteration regulatory authority. (Fish & G. Code, § 1600 et seq.) Likewise, to the extent implementation of the Project as proposed may result in "take" as defined by State law of any species protected under the California Endangered Species Act (CESA) (Fish & G. Code, § 2050 et seq.), the Project proponent may seek related take authorization as provided by the Fish and Game Code.

1A

<sup>&</sup>lt;sup>1</sup> CEQA is codified in the California Public Resources Code in section 21000 et seq. The "CEQA Guidelines" are found in Title 14 of the California Code of Regulations, commencing with section 15000.

#### PROJECT DESCRIPTION SUMMARY

**Proponent:** Inyo County

**Objective:** The objective of the Project is to satisfy current Federal Aviation Administration (FAA) runway design standards and safety requirements for aircrafts currently operating on Runway 12/30 at Bishop Airport.

#### Primary Project activities to modify Runway 12/30 Safety Area (RSA) include:

#### Runway 12 End

- Clearing vegetation, cutting, filling, grading, and compacting 7.8 acres of land within the RSA beyond Runway 12 end;
- Relocating the existing Los Angeles Department of Water and Power (LADWP) unpaved patrol road outside of the runway's Object Free Area (OFA); and
- Removing 1,635 linear feet of existing perimeter fence and installing 2,175 linear feet of new perimeter fence beyond the OFA boundary.

#### Runway 30 End

- Clearing vegetation, cutting, filling, and grading 6.5 acres of land within the RSA beyond Runway 30 end; and
- Removing 2,000 linear feet of existing perimeter fence and installing 3,125 linear feet of new perimeter fence beyond the OFA boundary.

#### **Runway Sides**

· Grading runway sides to a uniform flat surface.

**Location:** Bishop Airport (BIH), 703 Airport Road, Bishop, CA 93514; 1.5 miles east of the city of Bishop, located in Inyo County at Latitude 37.371775<sup>o</sup>, Longitude -118.363683<sup>o</sup>.

**Timeframe:** The Project is expected to start in late 2024 and last approximately three months.

#### COMMENTS AND RECOMMENDATIONS

CDFW offers the comments and recommendations below to assist Inyo County in adequately identifying and/or mitigating the Project's significant, or potentially significant, direct and indirect impacts on fish and wildlife (biological) resources. Editorial comments or other suggestions may also be included to improve the document. Based on the Project's avoidance of significant impacts on biological resources with implementation of mitigation measures, including those CDFW recommends in Attachment A, CDFW concludes that a Mitigated Negative Declaration is appropriate for the Project.

#### I. Environmental Setting and Related Impact Shortcoming

#### Comment #1: Burrowing Owl (Athene cunicularia)

**Issue:** On October 10, 2024, the Fish and Game Commission determined that western burrowing owl warrants protection as a candidate species under the California Endangered Species Act (Fish & G. Code, § 2050 et seq.). During the candidacy period, western burrowing owl will be afforded the same protection as threatened and endangered species under CESA.

Take of individual burrowing owls and their nests is defined by Fish and Game Code section 86, and prohibited by sections 3503, 3503.5, and 3513. Take is defined in Fish and Game Code section 86 as "hunt, pursue, catch, capture or kill, or attempt to hunt, pursue, catch, capture or kill." Fish and Game Code sections 3503, 3503.5, and 3513 afford protective measures as follows: It is unlawful to take, possess, or destroy any birds in the order Strigiformes, including western burrowing owls, except as otherwise provided in the Fish and Game Code and related regulations. (Fish & G. Code, § 3503.5.) It is also unlawful to take, possess, or destroy western burrowing owl nests or

1B

10

eggs, except as otherwise provided in the Fish and Game Code and related regulations. (Fish & G. Code, §§ 3503, 3503.5.) State law also explicitly incorporates the prohibitions on take and possession set forth in the federal Migratory Bird Treaty Act. (Fish & G. Code, § 3513.)

CDFW is concerned that the IS/MND does not discuss burrowing owl, identify Project impacts to burrowing owl, or ensure that impacts are mitigated to a level less than significant, despite the Project site's potential to provide suitable foraging and/or nesting habitat for burrowing owl. The Project may result in the take of burrowing owl, a CESA listed candidate species, during construction of the Project and life of the Project.

**Specific impact:** CDFW is concerned with the IS/MND's determined low expectation of burrowing owl occurrences, based on negative survey results from November 2022 and maintenance frequency of the graded areas of potential suitable habitat. Burrowing owls have a high potential to move into disturbed sites prior to and during construction activities, including any grading as a part of BIH's ongoing operations and maintenance activities.

Burrowing owls frequently move into disturbed areas since they are adapted to highly modified habitats (Chipman, et al., 2008), (Coulombe, 1971). Impacts to burrowing owl from the Project could include take of burrowing owls, their nests, or eggs or destroying nesting, foraging, or over-wintering habitat, thus impacting burrowing owl populations. Impacts can result from grading, earthmoving, burrow blockage, heavy equipment compaction and crushing of burrows, general Project disturbance that has the potential to harass owls at occupied burrows, and other activities.

Because burrowing owls highly depend on burrows at all times of the year for survival and/or reproduction, evicting them from nesting, roosting, and satellite burrows may lead to indirect impacts or take. Loss of access to burrows will likely result in varying levels of increased stress on burrowing owls and could depress reproduction, increase predation, increase energetic costs, and introduce risks posed by having to find and compete for available burrows (CDFW, 2012). Eviction of burrowing owls is a potentially significant impact under CEQA. If burrowing owl has inhabited the site the potential for the collapsing of burrows, entombment, displacement, direct take associated with vehicle and equipment strike, indirect take associated with Project operations such as attracting predators, reduction of habitat and habitat quality could occur.

Why impact would occur: According to CNDDB, burrowing owl occurrences have been documented in Laws, approximately 2 miles away from the Bishop Airport. Also, the project site is located within burrowing owl predicted habitat and geographic range (CDFW, 2024). The IS/MND indicates that unpaved portions of the Airport property are generally suitable for burrowing owls.

**Evidence impact would be significant:** The Project, as described, may result in injury, direct mortality, indirect mortality, disruption of breeding behavior, and/or may reduce reproductive capacity of the species. CDFW considers the direct and indirect take of burrowing owl, and the loss of the species' habitat as a significant impact, unless mitigated to a level of less than significant and in compliance with State (i.e., Fish and Game Code sections 3503.5, etc.) and Federal laws (i.e., Migratory Bird Treaty Act). Furthermore, since burrowing owl is now a CESA listed species, if full avoidance of burrowing owl cannot be achieved, CDFW considers the take of burrowing owl and the loss of the species' habitat as a significant impact, unless mitigated to a level of less than significant which may include that Project activities be postponed until appropriate authorization (i.e., a finalized CESA ITP under Fish and Game Code section 2081) is obtained.

Recommended potentially feasible mitigation measure(s) to reduce impacts to less than significant: CDFW recommends the inclusion of MM BIO-1, MM BIO-2, MM BIO-3, MM BIO-4, and MM BIO-5, which include surveys for burrowing owl to be conducted with follow up pre-construction surveys, based on the recommendations and

1C (cont.)

guidelines provided in the Staff Report on Burrowing Owl Mitigation (Department of Fish and Game, March 2012); available for download from CDFW's website: <a href="https://www.wildlife.ca.gov/conservation/survey-protocols">https://www.wildlife.ca.gov/conservation/survey-protocols</a>. The Staff Report on Burrowing Owl Mitigation, specifies three steps for Project impact evaluations:

- 1. Habitat assessment,
- 2. Surveys, and
- 3. Impact assessment

If burrowing owls are found to occupy the Project site and avoidance is not possible, CDFW recommends that Inyo County seek appropriate authorization prior to Project implementation through a CESA incidental take permit (ITP).

#### MM BIO-1 – Burrowing Owl

Prior to any ground disturbance, a survey for potential burrows followed by four breeding season surveys of areas found to have potential for burrowing owl occupation must be conducted in accordance with the Staff Report on Burrowing Owl Mitigation (CDFG 2012 or most recent version). Specifically, these reports suggest at least one site visit between February 15 and April 15 and a minimum of three surveys, at least three weeks apart, between the peak breeding season April 15 and July 15, with at least one visit after June 15. The surveys shall include 100 percent coverage of the Project site and include a minimum 500-foot buffer in adjacent habitat. A report summarizing the survey including all requirements for survey reports (page 30 of the 2012 Staff Report) shall be submitted to CDFW for review.

If no burrowing owl, active burrowing owl burrows, or sign (molted feathers, cast pellets, prey remains, eggshell fragments, decoration, or excrement) thereof are found, no further action is necessary.

If burrowing owl, active burrowing owl burrows, or sign thereof are found the qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be review and approved by CDFW for review and approval at least 30 days prior to initiation of ground disturbing activities. The Burrowing Owl Plan shall describe proposed avoidance, minimization, and monitoring actions. The Burrowing Owl Plan shall include the number and location of occupied burrow sites, acres of burrowing owl habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed. Project activities shall not occur within 1000 feet of an active burrow until CDFW approves the Burrowing Owl Plan. If the Project cannot ensure burrowing owls and their burrows are fully avoided, consultation with CDFW is warranted to discuss how to implement the Project and avoid take; or if avoidance is not feasible, to potentially acquire an ITP prior to any ground disturbing activities, pursuant Fish and Game Code section 2081 subdivision (b). Full mitigation often involves the permanent conservation of quality habitat benefiting the species through a conservation easement, along with habitat enhancement and ongoing management funded appropriately. Passive relocation, performed according to the Staff Report on Burrowing Owl Mitigation (CDGW, 2012) may be authorized through the incidental take permit as a minimization measure.

#### Comment #2: Nesting Birds

**Issue:** The IS/MND does not discuss nesting birds and does not include mitigation measures to avoid impacts to nesting birds. CDFW is concerned the Project has the potential to impact nesting birds including CESA-listed birds, CDFW Species of Special Concern (SSC) and common birds that are subject to Fish and Game Code Sections 3503, 3503.5, and 3513, and the Migratory Bird Treaty Act of 1918.

1D (cont.)

1E

**Specific Impact:** Potential take of nesting birds and loss of bird nesting and/or foraging habitat.

**Why impact would occur:** Project activities may disturb nesting birds, which can lead to failure of the nest or unauthorized take.

**Evidence impact would be significant:** Potential habitat for nesting birds and birds of prey is present within the Project area. The proposed Project should disclose all potential activities that may incur a direct or indirect take to nongame nesting birds within the Project footprint and its close vicinity. Appropriate avoidance, minimization, and/or mitigation measures to avoid take must be included in the environmental document. Measures to avoid the impacts should include species specific work windows, biological monitoring, installation of noise attenuation barriers, etc.

The Project proponent is responsible for complying with Fish and Game Code sections 3503, 3503.5, and 3513, which state as follows: section 3503 states that is it unlawful to take, possess, or needlessly destroy the nest or eggs or any bird, except as otherwise provided by Fish and Game Code or any regulation made pursuant thereto; section 3503.5 makes it unlawful to take, possess, or destroy any birds in the orders Falconiformes or Strigiformes (birds-of-prey) or to take, possess, or destroy the nest or eggs of any such bird except as otherwise provided by the Fish and Game Code or any regulation adopted pursuant thereto; section 3513 makes it unlawful to take or possess any migratory nongame bird except as provided by rules and regulations adopted by the Secretary of the Interior under provisions of the Migratory Bird Treaty Act of 1918, as amended (16 U.S.C. § 703 et seq.).

Recommended potentially feasible mitigation measure(s) to reduce impacts to less than significant: CDFW recommends a qualified biologist survey the entire Project area for nesting birds and all bird activity to observe behavior that could be related to nest building, incubation, feeding of young and/or possible behavior that could indicate agitation and/or nest abandonment caused by Project activities. CDFW recommends the inclusion of the following mitigation measure to avoid take of nesting birds:

#### MM BIO-2: Nesting Birds

The Project proponent expects that the proposed Project construction will commence in late 2024 and last approximately three months. Regardless of the time of year, nesting bird surveys shall be performed by a qualified avian biologist no more than three days prior to vegetation removal or grounddisturbing activities. Pre-construction surveys shall focus on both direct and indirect evidence of nesting, including nest locations and nesting behavior. The qualified avian biologist will make every effort to avoid potential nest predation as a result of survey and monitoring efforts. If active nests are found during the pre-construction nesting bird surveys, a qualified biologist shall establish an appropriate nest buffer to be marked on the ground. Nest buffers are species specific and shall be at least 300 feet for passerines and 500 feet for raptors. A smaller or larger buffer may be determined by the qualified biologist familiar with the nesting phenology of the nesting species and based on nest and buffer monitoring results. Construction activities may not occur inside the established buffers, which shall remain on site until a qualified biologist determines the young have fledged or the nest is no longer active. Active nests and adequacy of the established buffer distance shall be monitored daily by the qualified biologist until the qualified biologist has determined the young have fledged or the Project has been completed. The qualified biologist has the authority to stop work if nesting pairs exhibit signs of disturbance.

#### Comment #3: Rare Plants

CDFW is concerned that an analysis was not completed to form a complete inventory of rare plants within the Project area and to identify the level of impacts on those species identified as potentially present and thus whether the Project's impacts have

1E (cont.)

1F

been adequately identified, disclosed, and mitigated. According to the CNDDB, rare plants that have been documented within five miles of the survey area include Owens Valley checkerbloom (*Sidalcea covillei*; state endangered), Parish's popcorn flower (*Plagiobothrys parishii*; rare plant rank 1B.1), and Inyo County star-tulip (*Calochortus excavatus*; rare plant rank 1B.1). Reconnaissance surveys were conducted in November, a time of year when these species would not be detected. CDFW recommends that prior to adopting the IS/MND, the County complete focused surveys following accepted protocol/methods and update the IS/MND to reflect the survey results and any changes in mitigation to address Project impacts. CDFW recommends MM BIO-7 below be added to the IS/MND to fully avoid and otherwise protect sensitive plant communities from Project-related direct and indirect impacts.

#### MM BIO-3: Sensitive Plants Survey

Prior to Project implementation, and during the appropriate season, the County shall conduct botanical field survey following protocols set forth in the Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Sensitive Natural Communities (CDFW 2018). The surveys shall be conducted by a CDFW-approved botanist(s) experienced in conducting floristic botanical field surveys, knowledgeable of plant taxonomy and plant community ecology and classification, familiar with the plants of the area, including special status and locally significant plants, and familiar with the appropriate state and federal statutes related to plants and plant collecting. The botanical field surveys shall be conducted at the appropriate time of year when plants will both be evident and identifiable (usually, during flowering or fruiting) and, in a manner, which maximizes the likelihood of locating special status plants and sensitive natural communities that may be present. Botanical field surveys shall be conducted floristic in nature, meaning that every plant taxon that occurs in the project area is identified to the taxonomic level necessary to determine rarity and listing status.

If any rare plants or sensitive vegetation communities are identified, the County shall either avoid the occurrence, with an appropriate buffer, or mitigate the loss of the occurrence through the purchase of mitigation credits from a CDFW-approved bank or land acquisition and conservation at a minimum 3:1 (replacement-to-impact) ratio. Note that a higher ratio may be warranted if the proposed mitigation lands are located far away from the Project site (i.e., within a separate watershed) or is not occupied by or available to special status species.

If the Project has the potential to impact a State-listed species, the County should apply for a CESA ITP with CDFW.

Comment #4: Owens Valley Vole (Microtus californicus vallicola)

Section: Biological Resources Technical Report, Section 3.4.2, Page 3-13

Issue: The IS/MND does not adequately analyze Project impacts to Owens Valley vole.

**Specific impact:** The IS/MND concludes that Owens Valley vole is absent based solely on soil moisture conditions, and that dry soil samples previously collected to characterize soil in the Project area precludes Owens Valley vole suitable habitat. Inyo County tentatively plans to relocate the LADWP unpaved patrol road through Fremont cottonwood-willow riparian forest and saltgrass meadow habitat, of which one comprises of variable stands of hydric soil-adapted grassland species such as saltgrass (*Distichlis spicata*), rushes (*Juncus* spp.), cattail (*Typha* sp.), sedges (*Carex* spp.), beardless wildrye (*Leymus triticoides*), and alkali bulrush (*Bolboschoenus maritimus*) (Sawyer, Keeler-Wolf, & Evens, 2009).

Owens Valley voles are endemic to Owens Valley and were first collected and distinguished taxonomically as a subspecies to California vole (*Microtus californicus*) in 1898 (Bailey, 1898). While population trends and status of the Owens Valley vole are unknown, Owens Valley vole subpopulations are distributed along wetland meadows

1G (cont.)

1H

11

adjacent to the Owens River and its tributaries (USFWS, 1998). As a subspecies to California voles, Owens Valley voles have evolved to adapt to wetland meadow conditions specific to their respective southern, central, or northern portions of Owens Valley. To fragment an existing Owens Valley vole subpopulation of unknown population status throughout the northern portions of its range may pose bottleneck risks, genetic drift, and potential loss of population viability (Neuwald, 2010).

The Owens River Management Plan identified Reach 2, which includes the confluence of North Fork Bishop Creek, as the section of the Owens River with the highest habitat value for grassland associated indicator species such as Owens Valley vole. Swainson's hawk, and northern harrier (LADWP and Ecosystem Sciences, 2010). Specifically, realigning the new LADWP unpaved patrol road through mesic-vegetative communities in and adjacent to North Fork Bishop Creek could destroy Owens Valley vole runway and burrow habitats and mow hydrophytic vegetation that voles rely on as a food and water source for their high dietary water content (Getz, 1985), (Mullican & Keller, 1986). Furthermore, Owens Valley voles have sought refuge in microhabitat features such as shrubs, fence lines, and rush patches when macrohabitat quality diminished due to mowing or grazing (Hovland, Andreassen, & Ims, 1999) or seasonal and interannual changes in herbaceous vegetation density (Nelson, 2004). Depending on the scope and frequency of vegetation removal to install and maintain the perimeter fencing beyond the OFA boundary, this Project feature and associated activities may influence dispersal behavior or cause existing voles in the North Fork Bishop Creek to abandon disturbed wet meadows.

**Evidence impact would be significant:** The Owens Valley vole is a species of special concern (SSC). CEQA provides protection not only for CESA-listed species, but for any species including but not limited to SSC which can be shown to meet the criteria for State listing. Owens Valley vole is a SSC that meets the CEQA definition of rare, threatened, or endangered species (CEQA Guidelines, § 15380).

Recommended potentially feasible mitigation measures to reduce the impact to less than significant: While Owens Valley vole studies are largely absent, a study in 2004 concluded that Owens Valley vole ecology<sup>2</sup> closely resembled that of the California vole's (*Microtus californicus*) ecology (Nelson, 2004). Therefore, to evaluate potential impacts of the Project to Owens Valley voles, CDFW recommends the following mitigation measures in the Project's IS/MND, originally developed to study common microtine species such as California voles:

#### MM BIO-4: Owens Valley Vole Habitat Assessment

CDFW recommends conducting appropriate preconstruction field surveys for Owens Valley vole where potential habitat exists for the species. CDFW recommends that the Project proponent consult with a qualified biologist(s) knowledgeable of Owens Valley vole habitat, ecology, and field identification of the species to assess potential habitat.

#### MM-BIO-5: Owens Valley Vole Habitat Avoidance

If Owens Valley vole sign (burrows, runways, scat, etc.) of current or past use is found within the construction area, or the species is observed directly, CDFW recommends that the Project proponent consult with CDFW before proceeding with Project activities. Generally, signs of extensive runways should be present to presume presence; old and new sign is easily distinguished and can be a reliable indicator of current presence or absence (Nelson, 2004). However, the biologist(s) may implement avoidance and minimization measures for the species even if presence is unlikely, but habitat conditions warrant said measures.

#### **COMMENT #5: Lake and Streambed Alteration Agreement Program**

<sup>2</sup> i.e. Climate, vegetative communities, topography, elevation, and plant associations.

1I (cont.)

1J

1K

1L

#### Section 5.2.3, Page 5-5

The IS/MND identified approximately eight acres of streambed/pond/lake features within Project scope that would be potentially subject to regulations under Fish and Game Code Section 1602, shown in Table 5-3. While the RSA-related vegetation removal, grading, and filling activities of the Project either occur in upland or disturbed areas adjacent to the runways, relocating the existing LADWP unpaved patrol road outside of Runway 12's OFA requires extending the Project scope beyond the proposed RSA, outside of the airport easement boundary, into the North Fork Bishop Creek riparian area. Information about this new road development is limited to the project description, which only provides size and ownership information of the proposed road.

Additionally, the proposed Project may alter the North Fork of Bishop Creek and Rawson Canal riparian habitat, emergent wetland, or other sensitive natural communities associated with these streams and therefore may require the applicant to notify CDFW per Fish and Game Code section 1602. Fish and Game Code section 1602 requires an entity to notify CDFW prior to commencing any activity that may do one or more of the following: Substantially divert or obstruct the natural flow of any river, stream or lake; Substantially change or use any material from, the bed, channel or bank of any river, stream, or lake; or deposit debris, waster other materials that could pass into any river, stream or lake. Please note that "any river, stream or lake" includes those that are episodic (i.e., those that are dry for periods of time) as well as those that are perennial (i.e., those that flow year-round). This includes ephemeral streams, desert washes and water courses with a subsurface flow.

Upon receipt of a complete notification, CDFW determines if the proposed Project activities may substantially adversely affect existing fish and wildlife resources and whether a Lake and Streambed Alteration (LSA) Agreement is required. An LSA Agreement includes measures necessary to protect existing fish and wildlife resources. CDFW may suggest ways to modify your Project that would eliminate or reduce harmful impacts to fish and wildlife resources.

CDFW's issuance of an LSA Agreement is a "project" subject to CEQA (see Pub. Resources Code § 21065). To facilitate issuance of an LSA Agreement, if necessary, the IS/MND should fully identify the potential impacts to the lake, stream, or riparian resources, and provide adequate avoidance, mitigation, and monitoring and reporting commitments. Early consultation with CDFW is recommended, since modification of the proposed Project may be required to avoid or reduce impacts to fish and wildlife resources. To obtain a Lake or Streambed Alteration notification package, please go to <a href="https://www.wildlife.ca.gov/Conservation/LSA/Forms">https://www.wildlife.ca.gov/Conservation/LSA/Forms</a>.

#### ADDITIONAL COMMENTS AND RECOMMENDATIONS

#### **ENVIRONMENTAL DATA**

CEQA requires that information developed in environmental impact reports and negative declarations be incorporated into a database which may be used to make subsequent or supplemental environmental determinations. (Pub. Resources Code, § 21003, subd. (e).) Accordingly, please report any special status species and natural communities detected during Project surveys to the California Natural Diversity Database (CNDDB). The CNNDB field survey form can be filled out and submitted online at the following link: <a href="https://wildlife.ca.gov/Data/CNDDB/Submitting-Data">https://wildlife.ca.gov/Data/CNDDB/Submitting-Data</a>. The types of information reported to CNDDB can be found at the following link: <a href="https://www.wildlife.ca.gov/Data/CNDDB/Plants-and-Animals">https://www.wildlife.ca.gov/Data/CNDDB/Plants-and-Animals</a>.

#### **ENVIRONMENTAL DOCUMENT FILING FEES**

The Project, as proposed, would have an impact on fish and/or wildlife, and assessment of environmental document filing fees is necessary. Fees are payable upon filing of the Notice of Determination by the Lead Agency and serve to help defray the cost of environmental review by CDFW. Payment of the environmental document filing fee is

1L (cont.)

1M

1N

required in order for the underlying project approval to be operative, vested, and final. (Cal. Code Regs, tit. 14, § 753.5; Fish & G. Code, § 711.4; Pub. Resources Code, § 21089.)



#### CONCLUSION

CDFW appreciates the opportunity to comment on the MND to assist Inyo County in identifying and mitigating Project impacts on biological resources.

Questions regarding this letter or further coordination should be directed to Bryant Luu, Environmental Scientist at (760) 923-8666 or Bryant.Luu@wildlife.ca.gov.

Sincerely,

Docusigned by:

Ulsa Ellsworth

Alisa Ellsworth

Environmental Program Manager

ec: Rose Banks, Senior Environmental Scientist (Supervisor)
Inland Deserts Region
Rose.Banks@wildlife.ca.gov

Graham Meese, Senior Environmental Scientist (Specialist) Inland Deserts Region Graham.Meese@wildlife.ca.gov

Office of Planning and Research, State Clearinghouse, Sacramento State.clearinghouse@wildlife.ca.gov

#### **ATTACHMENTS**

Attachment A. Draft Mitigation Monitoring and Reporting Plan for Proposed CDFW Measures

#### **REFERENCES**

- (CNDDB), C. N. (2024). Special Animals List. Sacramento: California Department of Fish and Wildlife.
- Bailey, V. (1898). Descriptions of eleven new species and subspecies of voles. *Proceedings of the Biological Society of Washington*, 12: 85-90.
- Bombay, H. L., Benson, T., Valentine, B. E., & Stefani, R. A. (2003). A Survey Protocol for Willow Flycatcher in California.
- Browning, M. (1993). Comments on the taxonomy of Empidonax traillii (willow flycatcher). *Western Birds*, 25-33.
- Bumble Bee Watch. (2023, August 5). *Bumble Bee Watch*. Retrieved from Bumble Bee Watch: http://www.bumblebeewatch.org
- Carril, O. M., Griswold, T., Haefner, J., & Wilson, J. S. (2018). Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity. *PeerJ*, 6, e5867.
- CDFW. (1988). 1988 Annual Report on the Status of California's State listed Threatened and Endangered Plants and Animals. Sacramento: CDFW.
- CDFW. (1995). Five-year Status Review: Bank Swallow (Riparia riparia). Sacramento: CDFW.
- CDFW. (2009). Yellow-billed cuckoo life history account. Sacramento: California Department of Fish and Wildlife.
- CDFW. (2012). Staff Report on Burrowing Owl Mitigation. Sacramento: CDFW.
- CDFW. (2024). California Natural Diversity Database (CNDDB). Retrieved from CNDDB Maps and Data: https://wildlife.ca.gov/Data/CNDDB/Maps-and-Data#43018408-cnddb-in-bios
- Chipman, E. D., McIntyre, N. E., Strauss, R. E., Wallace, M. C., Ray, J. D., & Boal, C. W. (2008). Effects of Human Land Use on Western Burrowing Owl Foraging and Activity Budgets. *J. Raptor Res.*, 42(2).
- Coulombe, H. N. (1971). Behavior and Population Ecology of the Burrowing Owl, Speotyto cunicularia, in the Imperial Valley of California. *Ecology of the Burrowing Owl*.
- Dettling, M. D., Seavy, N. E., Howell, C. A., & Gardali, T. (2015). Current status of western yellow-billed cuckoo along the Sacramento and Feathers Rivers, California. PLoS ONE2.
- Ehrlich, P. R., Dobkin, D. S., & Wheye, D. (1988). *The Birder's Handbook*. New York: Simon and Schuster.
- ESA. (2023). Runway 12/30 Safety Area Improvement Project at Bishop Airport, Biological Resources Technical Report. Sacramento: ESA.
- Fisher, A. (1893). Report on the ornithology of the Death Valley expedition of 1891. N. Amer. Fauna.
- Forester, B. R., Day, C. C., Ruegg, K., & Landguth, E. L. (2023). Evolutionary potential mitigates extinction risk under climate change in the endangered southwestern willow flycatcher. *J Hered*, 114(4): 341-353.
- Getz, L. L. (1985). Habitats. In R. H. Tamarin, *Biology of New World Microtus* (pp. 286-309). Shippensburg: American Society of Mammalogists.

- Great Basin Bird Observatory. (2023). Population Assessment and Monitoring of Southwestern Willow Flycatcher, Western Yellow-billed Cuckoo, and Least Bell's Vireo on the Owens River Watershed. Reno: Great Basin Bird Observatory.
- Griffiths, J., & Villablanca, F. (2015). *Managing Monarch Butterfly Overwintering Groves: Making Room Among the Eucalyptus.* Sacramento: CDFG.
- Grinnell, J., & Miller, A. H. (1944). The Distribution of Birds of California. *Pacific Coast Avifauna*, 27.
- Halterman, M., Johnson, M. J., & Holmes, J. A. (2009). Western Yellow-billed Cuckoo Natural History Summary and Survey Methodology.
- Harris, L. D. (1988). Edge Effects and Conservation of Biotic Diversity. *Conservation Biology*, 2: 330-332.
- Haug, E. A., Millsap, B. A., & Martell, M. S. (1993). Burrowing Owl (Speotyto cunicularia). In the Birds of North America, 61.
- Hovland, N., Andreassen, H. P., & Ims, R. A. (1999). Foraging behavior of the root vole Microtus oeconomus in fragmented habitats. *Oecologia*, 121: 236-244.
- Hughes, J. M. (2020). Yellow-billed cuckoo (Coccyzus americanus), version 1.0. *The Birds of North America*.
- Killingsworth, S., May, E., Hatfield, R., & Jepsen, S. (2023). *Petition to List Morrison bumble bee as an endangered species under the U.S. Endangered Species Act.* The Xerces Society for Invertebrate Conservation.
- LADWP and Ecosystem Sciences. (2010). *Owens Valley Land Management Plan.* Los Angeles: LADWP.
- Laymon, S. A., & Halterman, M. D. (1987). *Distribution and Status of the Yellow-billed Cuckoo in California:* 1986–1987. Sacramento: California Department of Fish and Game, Nongame Bird and Mammal Section, Wildlife Management Division.
- Marcum, S., & Darst, C. (2021). Western Monarch Butterfly Conservation Recommendations.
- Mullican, T. R., & Keller, B. L. (1986). Ecology of the sagebrush vole (Lemmiscus curtatus) in southeastern Idaho. *Canadian Journal of Zoology*, 1218-1223.
- Murcia, C. (1995). Edge Effects in Fragmented Forests: Implications for Conservation. *Trends in Ecology and Evolution*, 10: 58-62.
- Nelson, F. C. (2004). Ecology of Owens Valley vole. Davis: UC Davis.
- Neuwald, J. L. (2010). Population isolation exacerbates conservation genetic concerns in the endangered Amargosa vole, Microtus californicus scirpensis. *Biological Conservation*, 143: 2028-2038.
- Pelton, E., Jepsen, S., Schultz, C., Fallon, C., & Black, S. H. (2016). State of the Monarch Butterfly Overwintering Sites in California. *The Xerces Society for Invertebrate Conservation*.
- Sawyer, J., Keeler-Wolf, T., & Evens, J. (2009). *A manual of California vegetation*. Sacramento: California Native Plant Society Press.
- Serena, M. (1982). The status and distribution of the willow flycatcher (Empidomax trailli) in selected portions of the Sierra Nevada. Sacramento: CDFG.
- Thogmartin, W. E., Wiederholt, R., Oberhauser, K., Drum, R. G., Diffendorfer, J. E., Altizer, S., . . . Lopez-Hoffman, L. (2017). Monarch Butterfly Population Decline in North America: Identifying the Threatening Processes. *Royal Society Open Science*, 4 (9).

- Thomsen, L. (1971). Behavior and ecology of burrowing owls on the Oakland Municipal Airport. *Condor* 73, 177-192.
- USFWS. (1998). Owens Basin Wetland and Aquatic Species Recovery Plan, Inyo and Mono Counties, California. Portland: USFWS.
- USFWS. (2001). Least Bell's Vireo Survey Guidelines.
- USFWS. (2014). Southwestern willow flycatcher (Empidonax traillii extimus) 5-year review: summary and evaluation. Phoenix: Arizona Ecological Services Office.
- USFWS. (2024). *National Wetlands Inventory: Surface waters and wetlands*. Retrieved from National Wetlands Inventory: https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/
- Weiss, S. B., Rich, P. M., Murphy, D. D., Calvert, W. H., & Ehrlich, P. R. (1991). Forest Canopy Structure at Overwintering Monarch Butterfly Sites: Measurements with Hemispherical Photography. *Conservation Biology*, 165-175.
- Xerces Society. (2017). Protecting California's Butterfly Groves: Management Guidelines for Monarch Butterfly Overwintering Habitat.
- Zeiner, D. C., Laudenslayer, W. F., Mayer, K. E., & White, M. (1990). *California's Wildlife Volume I-III*. Sacramento: CDFG.

## ATTACHMENT A: MITIGATION MONITORING AND REPORTING PROGRAM (MMRP) FOR CDFW-PROPOSED MITIGATION MEASURES

#### PURPOSE OF THE MMRP

The purpose of the MMRP is to ensure compliance with mitigation measures during project implementation. Mitigation measures must be implemented within the time periods indicated in the table below.

#### TABLE OF MITIGATION MEASURES

The following items are identified for each mitigation measure: Mitigation Measure, Implementation Schedule, and Responsible Party. The Mitigation Measure column summarizes the mitigation requirements. The Implementation Schedule column shows the date or phase when each mitigation measure will be implemented. The Responsible Party column identifies the person or agency that is primarily responsible for implementing the mitigation measure

| Biological Resources (BIO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|
| Mitigation Measure (MM) Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation<br>Schedule                                    | Responsible<br>Party |
| Prior to any ground disturbance, a survey for potential burrows followed by four breeding season surveys of areas found to have potential for burrowing owl occupation must be conducted in accordance with the Staff Report on Burrowing OWI Mitigation (CDFG 2012 or most recent version). Specifically, these reports suggest at least one site visit between February 15 and April 15 and a minimum of three surveys, at least three weeks apart, between the peak breeding season April 15 and July 15, with at least one visit after June 15. The surveys shall include 100 percent coverage of the Project site and include a minimum 500-foot buffer in adjacent habitat. A report summarizing the survey including all requirements for survey reports (page 30 of the 2012 Staff Report) shall be submitted to CDFW for review.  If no burrowing owl, active burrowing owl burrows, or sign (molted feathers, cast pellets, prey remains, eggshell fragments, decoration, or excrement) thereof are found, no further action is necessary.  If burrowing owl, active burrowing owl burrows, or sign thereof are found the qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be review and approved by CDFW for review and approval at least 30 days prior to initiation of ground disturbing activities. The Burrowing OWl Plan shall describe proposed avoidance, minimization, and monitoring actions. The Burrowing OWl Plan shall include the number and location of occupied burrow sites, acres of burrowing owl habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed. Project activities shall not occur within 1000 feet of an active burrow until CDFW approves the Burrowing Owl Plan. If the Project cannot ensure burrowing owls and their burrows are fully avoided, consultation with CDFW is warranted to discuss how to | Prior to ground-<br>or vegetation<br>disturbing<br>activities | Project proponent    |

| implement the Project and avoid take; or if avoidance is not feasible, to potentially acquire an ITP prior to any ground disturbing activities, pursuant Fish and Game Code section 2081 subdivision (b). Full mitigation often involves the permanent conservation of quality habitat benefiting the species through a conservation easement, along with habitat enhancement and ongoing management funded appropriately. Passive relocation, performed according to the Staff Report on Burrowing Owl Mitigation (CDGW, 2012) may be authorized through the incidental take permit as a minimization measure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|
| MM BIO-2: Nesting Birds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prior to ground-                                              | Project .            |
| The Project proponent expects that the proposed Project construction will commence in late 2024 and last approximately three months. Regardless of the time of year, nesting bird surveys shall be performed by a qualified avian biologist no more than three days prior to vegetation removal or ground-disturbing activities. Pre-construction surveys shall focus on both direct and indirect evidence of nesting, including nest locations and nesting behavior. The qualified avian biologist will make every effort to avoid potential nest predation as a result of survey and monitoring efforts. If active nests are found during the pre-construction nesting bird surveys, a qualified biologist shall establish an appropriate nest buffer to be marked on the ground. Nest buffers are species specific and shall be at least 300 feet for passerines and 500 feet for raptors. A smaller or larger buffer may be determined by the qualified biologist familiar with the nesting phenology of the nesting species and based on nest and buffer monitoring results. Construction activities may not occur inside the established buffers, which shall remain on site until a qualified biologist determines the young have fledged or the nest is no longer active. Active nests and adequacy of the established buffer distance shall be monitored daily by the qualified biologist until the qualified biologist has determined the young have fledged or the Project has been completed. The qualified biologist has the authority to | or vegetation<br>disturbing<br>activities                     | proponent            |
| stop work if nesting pairs exhibit signs of disturbance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Duian ta anacca d                                             | Duningt              |
| Prior to Project implementation, and during the appropriate season, the County shall conduct botanical field survey following protocols set forth in the Protocols for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Sensitive Natural Communities (CDFW 2018). The surveys shall be conducted by a CDFW-approved botanist(s) experienced in conducting floristic botanical field surveys, knowledgeable of plant taxonomy and plant community ecology and classification, familiar with the plants of the area, including special status and locally significant plants, and familiar with the appropriate state and federal statutes related to plants and plant collecting. The botanical field surveys shall be conducted at the appropriate time of year when plants will both be evident and identifiable (usually, during flowering or fruiting) and, in a manner, which maximizes the likelihood of locating special status plants and sensitive natural communities that may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prior to ground-<br>or vegetation<br>disturbing<br>activities | Project<br>proponent |

| located far away from the Project site (i.e., within a separate watershed) or is not occupied by or available to special status species.  If the Project has the potential to impact a State-listed species, the County should apply for a CESA ITP with CDFW.  MM BIO-4: Owens Valley Vole Habitat Assessment  CDFW recommends conducting appropriate preconstruction field surveys for Owens Valley vole where potential habitat exists for the species. CDFW recommends that the Project proponent consult with a qualified biologist(s) knowledgeable of Owens Valley vole habitat, ecology, and field identification of the species to assess potential habitat.  MM BIO-5: Owens Valley Vole Habitat Avoidance | Prior to ground- or vegetation disturbing activities  Prior to and during ground- | Project proponent  Project proponent |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | during ground-<br>or vegetation                                                   | proponent                            |

#### Letter 1 California Department of Fish and Wildlife

#### Response 1A

The California Department of Fish and Wildlife (CDFW) provided background information on its role and authority as a "Trustee" and "Responsible" Agency under the California Environmental Quality Act (CEQA) and the California Endangered Species Act (CESA). No changes to the IS/MND will be made as a result of this comment.

#### Response 1B

The comment describes the content of the comment letter and indicates that with mitigation, including additional mitigation measures proposed by CDFW, the Proposed Project would avoid significant environmental impacts and a Mitigated Negative Declaration is appropriate. The comment is noted.

#### Response 1C

The comment states the western burrowing owl has been proposed as a candidate species for protection under the CESA, and this candidacy conveys the same protection as a species listed as threatened and endangered. The comment further describes the applicable codes and regulations that establish what outcomes would constitute an unlawful harm to or "take" of a western burrowing owl. The comment asserts the Draft IS/MND based its determination of a low potential for occurrence on survey results from November 2022 and continued maintenance of the graded portions of the runway safety area (RSA), citing the propensity for western burrowing owls to occupy previously disturbed areas. The comment states that take of a western burrowing owl or its habitat would be a significant impact.

As discussed in the IS Appendix B (Biological Resources Technical Report), suitable burrows for burrowing owls were not observed during the site visits in June 2019, May 2020, and November 2022. However, MM-BIO-1 outlined below under response 1D is incorporated to provide updated information about burrowing owl habitat suitability and presence/absence at the site at the time of Project implementation.

#### Response 1D

The comment recommends mitigation measures be employed to avoid a significant impact to the western burrowing owl. The comment proposes a new survey for potential burrows as well as four additional surveys to be conducted during the western burrowing owl's breeding season. The comment states the surveys must be performed in accordance with the latest CDFW guidance which recommends the surveys occur at specific intervals between February 15 and July 15. The comment states that if burrowing owls, active burrows, or indications thereof are observed, then a plan for avoidance should be drafted by a qualified biologist and approved by CDFW. The comment states that if a take cannot be avoided, then an incidental take permit (ITP) should potentially be acquired prior to ground disturbance.

Mitigation Measures MM-BIO-1, MM-BIO-2, and MM-BIO-3 are added as shown below.

**MM-BIO-1: Burrowing Owl Habitat Assessment.** Prior to any ground disturbance, a habitat assessment and burrow survey will be performed within the Project Area plus a surrounding 500-foot buffer. If no suitable burrows are detected, then no further surveys will be required.

MM-BIO-2: Burrowing Owl Breeding Season Surveys. If suitable burrows are detected, then four breeding season surveys of areas found to have potential for burrowing owl occupation must be conducted in accordance with the Staff Report on Burrowing Owl Mitigation (CDFG 2012 or most recent version). Specifically, these reports suggest at least one site visit between February 15 and April 15 and a minimum of three surveys, at least three weeks apart, between the peak breeding season April 15 and July 15, with at least one visit after June 15. The surveys shall include 100 percent coverage of the Project site and include a minimum 500-foot buffer in adjacent habitat. A report summarizing the survey including all requirements for survey reports (page 30 of the 2012 Staff Report) shall be submitted to CDFW for review. If no burrowing owl, active burrowing owl burrows, or sign (molted feathers, cast pellets, prey remains, eggshell fragments, decoration, or excrement) thereof are found, no further action is necessary.

MM-BIO-3: Burrowing Owl Habitat Avoidance. If burrowing owl, active burrowing owl burrows, or sign thereof are found the qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be reviewed and approved by CDFW for review and approval at least 30 days prior to initiation of ground disturbing activities. The Burrowing Owl Plan shall describe proposed avoidance, minimization, and monitoring actions. The Burrowing Owl Plan shall include the number and location of occupied burrow sites, acres of burrowing owl habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed. Project activities shall not occur within 1000 feet of an active burrow until CDFW approves the Burrowing Owl Plan. If the Project cannot ensure burrowing owls and their burrows are fully avoided, consultation with CDFW is warranted to discuss how to implement the Project and avoid take; or if avoidance is not feasible, to potentially acquire an ITP prior to any ground disturbing activities, pursuant Fish and Game Code section 2081 subdivision (b). Full mitigation often involves the permanent conservation of quality habitat benefiting the species through a conservation easement, along with habitat enhancement and ongoing management funded appropriately. Passive relocation, performed according to the Staff Report on Burrowing Owl Mitigation (CDGW, 2012) may be authorized through the incidental take permit as a minimization measure.

#### Response 1E

The comment states the IS/MND does not address nesting birds and asserts a take of nesting birds or their habitat could occur due to project activities. The comment cites the presence of potential habitat for nesting birds within the Proposed Project Area as the reason for the concern. The comment is noted. Please refer to Response 1F below.

#### Response 1F

The comment proposes a mitigation measure requiring surveys by an avian biologist within three days of any vegetation removal or ground disturbance. In the event the survey discovers active nests, buffers measuring 300 to 500 feet depending on species should be established around the nests wherein construction activities would be restricted. The mitigation would also include daily monitoring of the nests.

Mitigation Measure MM-BIO-4 is added as shown below.

**MM-BIO-4: Nesting Birds.** The Project proponent expects that the proposed Project construction will commence in late 2024 and last approximately three months. Regardless of the time of year, nesting bird surveys shall be performed by a qualified avian biologist no more than

three days prior to vegetation removal or ground-disturbing activities. Pre-construction surveys shall focus on both direct and indirect evidence of nesting, including nest locations and nesting behavior. The qualified avian biologist will make every effort to avoid potential nest predation as a result of survey and monitoring efforts. If active nests are found during the pre-construction nesting bird surveys, a qualified biologist shall establish an appropriate nest buffer to be delineated and flagged. Nest buffers are species specific and shall be at least 300 feet for passerines and 500 feet for raptors. A smaller or larger buffer may be determined by the qualified biologist familiar with the nesting phenology of the nesting species and based on nest and buffer monitoring results. Construction activities may not occur inside the established buffers, which shall remain on site until a qualified biologist determines the young have fledged or the nest is no longer active. Active nests and adequacy of the established buffer distance shall be monitored daily by the qualified biologist until the qualified biologist has determined the young have fledged or the Project has been completed. The qualified biologist has the authority to stop work if nesting pairs exhibit signs of disturbance.

#### Response 1G

The comment asserts the analysis in the IS/MND did not provide a complete inventory of rare plants in the Proposed Project Area and, thus, did not adequately identify the level of potential impacts on rare plants. The comment states the CNDDB indicates Owens Valley checkerbloom, Parish's popcorn flower, and Inyo County star-tulip have been documented within five miles of the Proposed Project Area. The comment further states that the survey previously conducted for the IS/MND occurred at a time of year when those species would not be detected.

A complete floristic inventory within the project impact area is not required for a CEQA evaluation of potential project impacts to special-status plants. The special-status plants identified in Comment #3 of the CDFW letter do not have suitable habitat within the Proposed Project Area. According to the Jepson eFlora (UC/JEPS 2022 of Appendix B Biological Resources Technical Report) and the California Native Plant Society's Rare Plant Inventory (CNPS 2022a of Appendix B Biological Resources Technical Report), Parish's popcorn flower (*Plagiobothrys parishii*) is found in wet, alkaline soil around desert springs and mudflats. Based on the same references, Inyo County star tulip (*Calochortus excavatus*) occurs in grassy meadows in shadscale scrub, as well as chenopod scrub, and meadows and seeps in alkaline/mesic regions. Owens valley checkerbloom (*Sidalcea covillei*) similarly occurs in mesic areas, alkaline flats, chenopod scrubs, and meadows and seeps. Desert springs, mudflats, shadscale scrub, chenopod scrub, seeps, and alkaline soil types do not occur in the Proposed Project Area. Please refer to the table of Natural Communities and Habitat Types within the Survey Area (Table 1, Appendix B).

#### Response 1H

The comment proposes a mitigation measure requiring an additional field survey to be conducted prior to construction by a CDFW-approved botanist and during an appropriate season. Should any rare plants be identified, then an appropriate buffer should be established, or mitigation credits should be purchased to account for any loss.

A special-status plants survey is not warranted due to the lack of suitable habitat for special-status plants within the grading area and road.

#### Response 11

The comment states the IS/MND did not adequately analyze potential impacts to the Owens Valley vole, a species of special concern. The comment notes the realignment of the unpaved patrol road traverses Fremont cottonwood-willow riparian forest and saltgrass meadow habitat which could potentially be suitable habitat for the Owens Valley vole. The comment also notes the proximity of the Proposed Project Area to the confluence of the Owens River and the North Fork Bishop Creek, and the hospitable nature of the area to the Owens Valley Vole as concern for its presence. The comment is noted. Please refer to Responses 1J and 1K below.

#### Response 1J

The comment proposes a pre-construction survey to assess potential Owens Valley vole habitats.

Mitigation Measure MM-BIO-5 is added as shown below.

**MM-BIO-5: Owens Valley Vole Habitat Assessment.** Prior to any ground disturbance, a habitat assessment for Owens Valley Vole will be performed within the area traversed by the relocated patrol road, the only suitable habitat within the Proposed Project Area that would be impacted by Proposed Project implementation. If no active burrows or signs thereof (burrows, runways, scat) are found in this area, no further action is necessary.

#### Response 1K

The comment proposes that if surveys detect indications of Owens Valley vole presence, then Inyo County should consult with CDFW before commencing construction activities.

Mitigation Measure MM-BIO-6 is added as shown below.

MM-BIO-6: Owens Valley Vole Habitat Avoidance. If sign of current or past use by Owens Valley vole (burrows, runways, scat) is found within the construction area, a qualified biologist shall prepare and implement a plan for avoidance, minimization, and mitigation measures to be reviewed and approved by CDFW. The Owens Valley vole Plan shall describe proposed avoidance, minimization, and monitoring actions. The Owens Valley vole Plan shall also include the number and location of occupied burrow sites, acres of Owens Valley vole habitat that will be impacted, details of site monitoring, and details on proposed buffers and other avoidance measures if avoidance is proposed.

#### Response 1L

The comment states the IS/MND identified approximately eight acres of streambed/pond/lake features and that additional riparian area would potentially be subject to impacts from the realignment of the patrol road. The comment further states the Proposed Project may alter riparian habitat associated with North Fork Bishop Creek and Rawson Canal. The comment states these alterations may require notification be provided to CDFW prior to any activity which could do one or more of the following: substantially divert or obstruct the natural flow of any river, stream or lake; substantially change or use any material from, the bed, channel or bank of any river, stream, or lake; or deposit debris, waster other materials that could pass

into any river, stream or lake so that CDFW can determine if a Lake and Streambed Alteration (LSA) Agreement would be required.

As stated in the IS Biological Resources discussion on checklist items b and c, riparian and wetland impacts would be avoided and a Stormwater Pollution Prevention Plan (SWPPP) would be implemented to prevent erosion, sediment, and other pollutants from entering riparian and wetland areas adjacent to the grading area. Rawson Canal and associated riparian habitat would be avoided by over 100 feet. No other rivers, lakes, or streams occur within the Proposed Project Area. Thus, no impacts are anticipated. However, based on the final location and alignment road determined during the design phase, Inyo County would notify CDFW if the relocated patrol road would substantially change or use any material from, the bed, channel, or bank of any river stream or lake; or deposit debris, waste or other material that could pass into any river, stream, or lake.

Mitigation Measure MM-BIO-7 is added as shown below.

**MM-BIO-7: Riparian Habitat Notification.** If, during the design phase of the Proposed Project, potential adverse impacts to riparian habitat associated with North Fork Bishop Creek are determined to be unavoidable, Inyo County will notify CDFW according to the California Fish and Game Code Section 1602. The notification shall include a quantification of riparian area impacted by the Proposed Project and description of post-Project restoration of impacts.

#### Response 1M

The comment states a request from CDFW that any detections of special status species during project surveys should be reported to the California Natural Diversity Database (CNDDB). While no special status species were detected during project surveys, any detections of special status species that occur during any subsequent surveys (e.g., preconstruction surveys) will be reported to the CNDDB. No changes to the IS/MND will be made as a result of this comment.

#### Response 1N

The comment states that the project, as proposed, would have an impact on fish or wildlife, and therefore the payment of the CEQA Environmental Document Filing Fees will be required upon filing of the CEQA Notice of Determination. The comment is noted.